These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 23955249)
21. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris. Balakumaran PA; Förster J; Zimmermann M; Charumathi J; Schmitz A; Czarnotta E; Lehnen M; Sudarsan S; Ebert BE; Blank LM; Meenakshisundaram S BMC Biotechnol; 2016 Feb; 16():20. PubMed ID: 26897180 [TBL] [Abstract][Full Text] [Related]
22. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. Ulčnik A; Kralj Cigić I; Pohleven F World J Microbiol Biotechnol; 2013 Dec; 29(12):2239-47. PubMed ID: 23736895 [TBL] [Abstract][Full Text] [Related]
23. Metal stress induces programmed cell death in aquatic fungi. Azevedo MM; Almeida B; Ludovico P; Cássio F Aquat Toxicol; 2009 May; 92(4):264-70. PubMed ID: 19297034 [TBL] [Abstract][Full Text] [Related]
24. Biosorption of copper by endophytic fungi isolated from Nepenthes ampullaria. Wong C; Tan LT; Mujahid A; Lihan S; Wee JLS; Ting LF; Müller M Lett Appl Microbiol; 2018 Oct; 67(4):384-391. PubMed ID: 29998586 [TBL] [Abstract][Full Text] [Related]
25. Short-term exposure to low concentrations of copper oxide nanoparticles can negatively impact the ecological performance of a cosmopolitan freshwater fungus. Seena S; Kumar S Environ Sci Process Impacts; 2019 Dec; 21(12):2001-2007. PubMed ID: 31720620 [TBL] [Abstract][Full Text] [Related]
26. Characterization of a fungal strain isolated from a polyphenol polluted site. Dritsa V; Rigas F; Natsis K; Marchant R Bioresour Technol; 2007 Jul; 98(9):1741-7. PubMed ID: 16935498 [TBL] [Abstract][Full Text] [Related]
27. Copper and zinc affect the activity of plasma membrane H+-ATPase and thiol content in aquatic fungi. Azevedo MM; Guimarães-Soares L; Pascoal C; Cássio F Microbiology (Reading); 2016 May; 162(5):740-747. PubMed ID: 26916755 [TBL] [Abstract][Full Text] [Related]
28. In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases. Cambria MT; Gullotto D; Garavaglia S; Cambria A J Biomol Struct Dyn; 2012; 30(1):89-101. PubMed ID: 22571435 [TBL] [Abstract][Full Text] [Related]
29. Ecophysiological tolerance of duckweeds exposed to copper. Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182 [TBL] [Abstract][Full Text] [Related]
30. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Götze S; Matoo OB; Beniash E; Saborowski R; Sokolova IM Aquat Toxicol; 2014 Apr; 149():65-82. PubMed ID: 24572072 [TBL] [Abstract][Full Text] [Related]
31. Growth and production of laccases by the ligninolytic fungi, Pleurotus ostreatus and Botryosphaeria rhodina , cultured on basal medium containing the herbicide, Scepter (imazaquin). Rezende MI; Barbosa AM; Vasconcelos AF; Haddad R; Dekker RF J Basic Microbiol; 2005; 45(6):460-9. PubMed ID: 16304708 [TBL] [Abstract][Full Text] [Related]
32. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindío, Colombia)]. Chaparro DF; Rosas DC; Varela A Rev Iberoam Micol; 2009 Dec; 26(4):238-43. PubMed ID: 19796977 [TBL] [Abstract][Full Text] [Related]
33. [The effect of copper ions on the production of laccase by the fungus Lentinus (Panus) tigrinus]. Shutova VV; Revin VV; Makushina IuA Prikl Biokhim Mikrobiol; 2008; 44(6):683-7. PubMed ID: 19145976 [TBL] [Abstract][Full Text] [Related]
34. Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. Manubens A; Canessa P; Folch C; Avila M; Salas L; Vicuña R FEMS Microbiol Lett; 2007 Oct; 275(1):139-45. PubMed ID: 17711455 [TBL] [Abstract][Full Text] [Related]
36. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Huang DL; Zeng GM; Feng CL; Hu S; Zhao MH; Lai C; Zhang Y; Jiang XY; Liu HL Chemosphere; 2010 Nov; 81(9):1091-7. PubMed ID: 20951406 [TBL] [Abstract][Full Text] [Related]
37. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. Maznah WO; Al-Fawwaz AT; Surif M J Environ Sci (China); 2012; 24(8):1386-93. PubMed ID: 23513679 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of nanocopper removal and toxicity in municipal wastewaters. Ganesh R; Smeraldi J; Hosseini T; Khatib L; Olson BH; Rosso D Environ Sci Technol; 2010 Oct; 44(20):7808-13. PubMed ID: 20853883 [TBL] [Abstract][Full Text] [Related]
39. Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Serra A; Guasch H Sci Total Environ; 2009 Sep; 407(19):5274-82. PubMed ID: 19646733 [TBL] [Abstract][Full Text] [Related]
40. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits. Amiri A; Holb IJ; Schnabel G Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]