BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23955476)

  • 1. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation.
    Radhakrishnan H; Srinivasan VJ
    J Biomed Opt; 2013 Aug; 18(8):86010. PubMed ID: 23955476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo functional retinal optical coherence tomography.
    Schmoll T; Kolbitsch C; Leitgeb RA
    J Biomed Opt; 2010; 15(4):041513. PubMed ID: 20799791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography.
    Wang Y; Bower BA; Izatt JA; Tan O; Huang D
    J Biomed Opt; 2008; 13(6):064003. PubMed ID: 19123650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis.
    Debuc DC; Salinas HM; Ranganathan S; Tátrai E; Gao W; Shen M; Wang J; Somfai GM; Puliafito CA
    J Biomed Opt; 2010; 15(4):046015. PubMed ID: 20799817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging.
    Chen Y; Burnes DL; de Bruin M; Mujat M; de Boer JF
    J Biomed Opt; 2009; 14(2):024016. PubMed ID: 19405746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography.
    Wang Y; Bower BA; Izatt JA; Tan O; Huang D
    J Biomed Opt; 2007; 12(4):041215. PubMed ID: 17867804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images.
    Tátrai E; Ranganathan S; Ferencz M; DeBuc DC; Somfai GM
    J Biomed Opt; 2011 May; 16(5):056004. PubMed ID: 21639572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistics of optical coherence tomography data from human retina.
    Grzywacz NM; de Juan J; Ferrone C; Giannini D; Huang D; Koch G; Russo V; Tan O; Bruni C
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1224-37. PubMed ID: 20304733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User-guided segmentation for volumetric retinal optical coherence tomography images.
    Yin X; Chao JR; Wang RK
    J Biomed Opt; 2014 Aug; 19(8):086020. PubMed ID: 25147962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.
    Jørgensen TM; Thomadsen J; Christensen U; Soliman W; Sander B
    J Biomed Opt; 2007; 12(4):041208. PubMed ID: 17867797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats.
    Li H; Liu W; Zhang HF
    J Biomed Opt; 2015 Oct; 20(10):106010. PubMed ID: 26502233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic focus in optical coherence tomography for retinal imaging.
    Pircher M; Götzinger E; Hitzenberger CK
    J Biomed Opt; 2006; 11(5):054013. PubMed ID: 17092162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration.
    Ricco S; Chen M; Ishikawa H; Wollstein G; Schuman J
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):100-7. PubMed ID: 20425976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography.
    Michaely R; Bachmann AH; Villiger ML; Blatter C; Lasser T; Leitgeb RA
    J Biomed Opt; 2007; 12(4):041213. PubMed ID: 17867802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated retinal shadow compensation of optical coherence tomography images.
    Fabritius T; Makita S; Hong Y; Myllylä R; Yasuno Y
    J Biomed Opt; 2009; 14(1):010503. PubMed ID: 19256685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation.
    Bower BA; Zhao M; Zawadzki RJ; Izatt JA
    J Biomed Opt; 2007; 12(4):041214. PubMed ID: 17867803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Wojtkowski M; Fujimoto JG; Duker JS
    Opt Lett; 2006 Aug; 31(15):2308-10. PubMed ID: 16832468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.