BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23955693)

  • 21. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-phase flow in microfluidic-chip design of hydrodynamic filtration for cell particle sorting.
    Yoon K; Jung HW; Chun MS
    Electrophoresis; 2020 Jun; 41(10-11):1002-1010. PubMed ID: 32097495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic device.
    Li L; Liu W; Wang J; Tu Q; Liu R; Wang J
    Electrophoresis; 2010 Sep; 31(18):3159-66. PubMed ID: 20872615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming the sensitivity vs. throughput tradeoff in Coulter counters: A novel side counter design.
    Bacheschi DT; Polsky W; Kobos Z; Yosinski S; Menze L; Chen J; Reed MA
    Biosens Bioelectron; 2020 Nov; 168():112507. PubMed ID: 32905926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Microfluidic Ceiling Designs for the Capture of Circulating Tumor Cells on a Microarray Platform.
    Liu HY; Koch C; Haller A; Joosse SA; Kumar R; Vellekoop MJ; Horst LJ; Keller L; Babayan A; Failla AV; Jensen J; Peine S; Keplinger F; Fuchs H; Pantel K; Hirtz M
    Adv Biosyst; 2020 Feb; 4(2):e1900162. PubMed ID: 32293134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.
    Park ES; Duffy SP; Ma H
    Methods Mol Biol; 2017; 1634():21-32. PubMed ID: 28819838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.
    Shields CW; Reyes CD; López GP
    Lab Chip; 2015 Mar; 15(5):1230-49. PubMed ID: 25598308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells.
    Burger R; Kurzbuch D; Gorkin R; Kijanka G; Glynn M; McDonagh C; Ducrée J
    Lab Chip; 2015 Jan; 15(2):378-81. PubMed ID: 25407668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
    Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F
    Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circulating tumor cell detection using a parallel flow micro-aperture chip system.
    Chang CL; Huang W; Jalal SI; Chan BD; Mahmood A; Shahda S; O'Neil BH; Matei DE; Savran CA
    Lab Chip; 2015 Apr; 15(7):1677-88. PubMed ID: 25687986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibody-free isolation and regulation of adherent cancer cells via hybrid branched microtube-sandwiched hydrodynamic system.
    Feng J; Mo J; Zhang A; Liu D; Zhou L; Hang T; Yang C; Wu Q; Xia D; Wen R; Yang J; Feng Y; Huang Y; Hu N; He G; Xie X
    Nanoscale; 2020 Feb; 12(8):5103-5113. PubMed ID: 32068774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis.
    Khamenehfar A; Li PC
    Curr Pharm Biotechnol; 2016; 17(9):810-21. PubMed ID: 26927214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation detection of different circulating tumor cells in the blood using an electrochemical microfluidic channel modified with a lipid-bonded conducting polymer.
    Gurudatt NG; Chung S; Kim JM; Kim MH; Jung DK; Han JY; Shim YB
    Biosens Bioelectron; 2019 Dec; 146():111746. PubMed ID: 31586761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.
    Antfolk M; Magnusson C; Augustsson P; Lilja H; Laurell T
    Anal Chem; 2015 Sep; 87(18):9322-8. PubMed ID: 26309066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Electrochemical ELISA for Specific Identification of Captured Cancer Cells.
    Safaei TS; Mohamadi RM; Sargent EH; Kelley SO
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14165-9. PubMed ID: 25938818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array.
    Ding L; Radfar P; Rezaei M; Warkiani ME
    Mikrochim Acta; 2021 Jul; 188(8):242. PubMed ID: 34226955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.