These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. RNA interference in insects: the link between antiviral defense and pest control. Niu J; Chen R; Wang JJ Insect Sci; 2024 Feb; 31(1):2-12. PubMed ID: 37162315 [TBL] [Abstract][Full Text] [Related]
23. Enhancing RNAi by using concatemerized double-stranded RNA. Sharath Chandra G; Asokan R; Manamohan M; Krishna Kumar N Pest Manag Sci; 2019 Feb; 75(2):506-514. PubMed ID: 30039906 [TBL] [Abstract][Full Text] [Related]
24. Delivery of Double-Stranded RNAs (dsRNAs) Produced by Escherichia coli HT115(DE3) for Nontransgenic RNAi-Based Insect Pest Management. Taracena ML; Garcia Caffaro I; Paiva-Silva GO; Oliveira PL; Rendon PA; Dotson EM; Pennington PM Methods Mol Biol; 2022; 2360():279-294. PubMed ID: 34495521 [TBL] [Abstract][Full Text] [Related]
25. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference. Li X; Dong X; Zou C; Zhang H Sci Rep; 2015 Mar; 5():8700. PubMed ID: 25731667 [TBL] [Abstract][Full Text] [Related]
26. Strategies for enhancing the efficiency of RNA interference in insects. Silver K; Cooper AM; Zhu KY Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063 [TBL] [Abstract][Full Text] [Related]
27. RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Li J; Chen Q; Lin Y; Jiang T; Wu G; Hua H Pest Manag Sci; 2011 Jul; 67(7):852-9. PubMed ID: 21370391 [TBL] [Abstract][Full Text] [Related]
28. RNA interference: Applications and advances in insect toxicology and insect pest management. Kim YH; Soumaila Issa M; Cooper AM; Zhu KY Pestic Biochem Physiol; 2015 May; 120():109-17. PubMed ID: 25987228 [TBL] [Abstract][Full Text] [Related]
29. Chemically modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection. Howard JD; Beghyn M; Dewulf N; De Vos Y; Philips A; Portwood D; Kilby PM; Oliver D; Maddelein W; Brown S; Dickman MJ J Biol Chem; 2022 Sep; 298(9):102311. PubMed ID: 35921898 [TBL] [Abstract][Full Text] [Related]
30. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. Ren D; Cai Z; Song J; Wu Z; Zhou S Insect Mol Biol; 2014 Apr; 23(2):175-84. PubMed ID: 24308607 [TBL] [Abstract][Full Text] [Related]
31. Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects. Uryu O; Kamae Y; Tomioka K; Yoshii T J Insect Physiol; 2013 Apr; 59(4):494-9. PubMed ID: 23458340 [TBL] [Abstract][Full Text] [Related]
32. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942 [TBL] [Abstract][Full Text] [Related]
33. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect Nilaparvata lugens. Li T; Chen J; Fan X; Chen W; Zhang W Pest Manag Sci; 2017 Jul; 73(7):1529-1537. PubMed ID: 27885784 [TBL] [Abstract][Full Text] [Related]
34. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Yan S; Ren BY; Shen J Insect Sci; 2021 Feb; 28(1):21-34. PubMed ID: 32478473 [TBL] [Abstract][Full Text] [Related]
35. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella. Wang J; Gu L; Ireland S; Garczynski SF; Knipple DC Gene; 2015 Nov; 572(2):184-90. PubMed ID: 26162675 [TBL] [Abstract][Full Text] [Related]
36. Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. Kwon DH; Park JH; Lee SH Pestic Biochem Physiol; 2013 Jan; 105(1):69-75. PubMed ID: 24238293 [TBL] [Abstract][Full Text] [Related]
37. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. Zha W; Peng X; Chen R; Du B; Zhu L; He G PLoS One; 2011; 6(5):e20504. PubMed ID: 21655219 [TBL] [Abstract][Full Text] [Related]
38. The use of cell and larval assays to identify target genes for RNA interference-meditated control of the Australian sheep blowfly (Lucilia cuprina). Yang Y; Zhang B; Yong J; James P; Xu ZP; Mitter N; Mahony TJ; Mody KT Pest Manag Sci; 2024 Sep; 80(9):4686-4698. PubMed ID: 38847522 [TBL] [Abstract][Full Text] [Related]
39. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. Garbutt JS; Bellés X; Richards EH; Reynolds SE J Insect Physiol; 2013 Feb; 59(2):171-8. PubMed ID: 22664137 [TBL] [Abstract][Full Text] [Related]
40. Differential effects of RNAi treatments on field populations of the western corn rootworm. Chu CC; Sun W; Spencer JL; Pittendrigh BR; Seufferheld MJ Pestic Biochem Physiol; 2014 Mar; 110():1-6. PubMed ID: 24759044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]