These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

819 related articles for article (PubMed ID: 23955822)

  • 41. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control.
    Wang Y; Zhang H; Li H; Miao X
    PLoS One; 2011 Apr; 6(4):e18644. PubMed ID: 21494551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Double-stranded RNA Oral Delivery Methods to Induce RNA Interference in Phloem and Plant-sap-feeding Hemipteran Insects.
    Ghosh SKB; Hunter WB; Park AL; Gundersen-Rindal DE
    J Vis Exp; 2018 May; (135):. PubMed ID: 29782023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Environmental RNAi in herbivorous insects.
    Ivashuta S; Zhang Y; Wiggins BE; Ramaseshadri P; Segers GC; Johnson S; Meyer SE; Kerstetter RA; McNulty BC; Bolognesi R; Heck GR
    RNA; 2015 May; 21(5):840-50. PubMed ID: 25802407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current scenario of RNAi-based hemipteran control.
    Jain RG; Robinson KE; Asgari S; Mitter N
    Pest Manag Sci; 2021 May; 77(5):2188-2196. PubMed ID: 33099867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.
    Ulrich J; Dao VA; Majumdar U; Schmitt-Engel C; Schwirz J; Schultheis D; Ströhlein N; Troelenberg N; Grossmann D; Richter T; Dönitz J; Gerischer L; Leboulle G; Vilcinskas A; Stanke M; Bucher G
    BMC Genomics; 2015 Sep; 16(1):674. PubMed ID: 26334912
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte.
    Khajuria C; Vélez AM; Rangasamy M; Wang H; Fishilevich E; Frey ML; Carneiro NP; Gandra P; Narva KE; Siegfried BD
    Insect Biochem Mol Biol; 2015 Aug; 63():54-62. PubMed ID: 26005118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Non-Target Effects of dsRNA Molecules in Hemipteran Insects.
    Arora AK; Chung SH; Douglas AE
    Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33809132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments.
    Zotti MJ; Smagghe G
    Neotrop Entomol; 2015 Jun; 44(3):197-213. PubMed ID: 26013264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Establishment of RNAi-Mediated Pest Control Method for Red Imported Fire Ant,
    Wang JD; Chen YH; Zhang YX; Lin JW; Gao SJ; Tang BZ; Hou YM
    J Agric Food Chem; 2024 May; 72(19):10936-10943. PubMed ID: 38691835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of RNAi methods for Peregrinus maidis, the corn planthopper.
    Yao J; Rotenberg D; Afsharifar A; Barandoc-Alviar K; Whitfield AE
    PLoS One; 2013; 8(8):e70243. PubMed ID: 23950915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The insect ecdysone receptor is a good potential target for RNAi-based pest control.
    Yu R; Xu X; Liang Y; Tian H; Pan Z; Jin S; Wang N; Zhang W
    Int J Biol Sci; 2014; 10(10):1171-80. PubMed ID: 25516715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of dietary RNA interference delivery to western flower thrips Frankliniella occidentalis and onion thrips Thrips tabaci.
    Andongma AA; Greig C; Dyson PJ; Flynn N; Whitten MMA
    Arch Insect Biochem Physiol; 2020 Mar; 103(3):e21645. PubMed ID: 31742774
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA silencing of hormonal biosynthetic genes impairs larval growth and development in cotton bollworm,
    Jaiwal A; Natarajaswamy K; Venkat Rajam M
    J Biosci; 2020; 45():. PubMed ID: 32975236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNAi technology: a new platform for crop pest control.
    Mamta B; Rajam MV
    Physiol Mol Biol Plants; 2017 Jul; 23(3):487-501. PubMed ID: 28878489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the RNA interference effects triggered by dsRNA and siRNA in Tribolium castaneum.
    Wang J; Wu M; Wang B; Han Z
    Pest Manag Sci; 2013 Jul; 69(7):781-6. PubMed ID: 23526733
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera.
    Asokan R; Chandra GS; Manamohan M; Kumar NK
    Bull Entomol Res; 2013 Oct; 103(5):555-63. PubMed ID: 23557597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines.
    Zheng Y; Hu Y; Yan S; Zhou H; Song D; Yin M; Shen J
    Pest Manag Sci; 2019 Jul; 75(7):1993-1999. PubMed ID: 30610748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests.
    Mehlhorn S; Ulrich J; Baden CU; Buer B; Maiwald F; Lueke B; Geibel S; Bucher G; Nauen R
    Pestic Biochem Physiol; 2021 Jul; 176():104870. PubMed ID: 34119215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors.
    Ganbaatar O; Cao B; Zhang Y; Bao D; Bao W; Wuriyanghan H
    BMC Biotechnol; 2017 Feb; 17(1):9. PubMed ID: 28183289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis.
    Cooper AM; Song H; Yu Z; Biondi M; Bai J; Shi X; Ren Z; Weerasekara SM; Hua DH; Silver K; Zhang J; Zhu KY
    Pest Manag Sci; 2021 Feb; 77(2):635-645. PubMed ID: 33002336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.