These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

819 related articles for article (PubMed ID: 23955822)

  • 61. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae).
    Prentice K; Christiaens O; Pertry I; Bailey A; Niblett C; Ghislain M; Gheysen G; Smagghe G
    Pest Manag Sci; 2017 Jan; 73(1):44-52. PubMed ID: 27299308
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transport of orally delivered dsRNA in southern green stink bug, Nezara viridula.
    Gurusamy D; Howell JL; Chereddy SCRR; Koo J; Palli SR
    Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21692. PubMed ID: 32441400
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests.
    Garbatti Factor B; de Moura Manoel Bento F; Figueira A
    Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids.
    Zhang J; Khan SA; Hasse C; Ruf S; Heckel DG; Bock R
    Science; 2015 Feb; 347(6225):991-4. PubMed ID: 25722411
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens.
    Wang W; Wan P; Lai F; Zhu T; Fu Q
    Pest Manag Sci; 2018 Jul; 74(7):1711-1719. PubMed ID: 29381254
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular mechanisms influencing efficiency of RNA interference in insects.
    Cooper AM; Silver K; Zhang J; Park Y; Zhu KY
    Pest Manag Sci; 2019 Jan; 75(1):18-28. PubMed ID: 29931761
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Application of RNA interference in triatomine (Hemiptera: Reduviidae) studies.
    Paim RM; Araujo RN; Lehane MJ; Gontijo NF; Pereira MH
    Insect Sci; 2013 Feb; 20(1):40-52. PubMed ID: 23955824
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities.
    Singewar K; Fladung M
    Funct Integr Genomics; 2023 May; 23(2):185. PubMed ID: 37243792
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response.
    Lin YH; Huang JH; Liu Y; Belles X; Lee HJ
    Pest Manag Sci; 2017 May; 73(5):960-966. PubMed ID: 27470169
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect.
    Zhang X; Fan Z; Zhang R; Kong X; Liu F; Fang J; Zhang S; Zhang Z
    Pest Manag Sci; 2023 Apr; 79(4):1566-1577. PubMed ID: 36527705
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo.
    Wang K; Peng Y; Pu J; Fu W; Wang J; Han Z
    Insect Biochem Mol Biol; 2016 Oct; 77():1-9. PubMed ID: 27449967
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recombinant fungal entomopathogen RNAi target insect gene.
    Hu Q; Wu W
    Bioengineered; 2016 Nov; 7(6):504-507. PubMed ID: 27715447
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The mysteries of insect RNAi: A focus on dsRNA uptake and transport.
    Vélez AM; Fishilevich E
    Pestic Biochem Physiol; 2018 Oct; 151():25-31. PubMed ID: 30704709
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives.
    Niu J; Shen G; Christiaens O; Smagghe G; He L; Wang J
    Pest Manag Sci; 2018 Dec; 74(12):2680-2687. PubMed ID: 29749092
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae).
    Al-Ayedh H; Rizwan-Ul-Haq M; Hussain A; Aljabr AM
    Pest Manag Sci; 2016 Nov; 72(11):2118-2127. PubMed ID: 26822903
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Silencing of Target Chitinase Genes via Oral Delivery of dsRNA Caused Lethal Phenotypic Effects in Mythimna separata (Lepidoptera: Noctuidae).
    Cao B; Bao W; Wuriyanghan H
    Appl Biochem Biotechnol; 2017 Feb; 181(2):860-866. PubMed ID: 27663609
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Examination of the Suitability of Attractive Target Genes for RNAi-Based Pest Control.
    Zhang W
    Methods Mol Biol; 2022; 2360():175-185. PubMed ID: 34495515
    [TBL] [Abstract][Full Text] [Related]  

  • 79. RNase I
    Wang PH; Schulenberg G; Whitlock S; Worden A; Zhou N; Novak S; Chen W
    BMC Biotechnol; 2018 Jan; 18(1):3. PubMed ID: 29343265
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA.
    Zhou X; Wheeler MM; Oi FM; Scharf ME
    Insect Biochem Mol Biol; 2008 Aug; 38(8):805-15. PubMed ID: 18625404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.