These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 23955825)
1. MicroRNA-dependent development revealed by RNA interference-mediated gene silencing of LmDicer1 in the migratory locust. Wang YL; Yang ML; Jiang F; Zhang JZ; Kang L Insect Sci; 2013 Feb; 20(1):53-60. PubMed ID: 23955825 [TBL] [Abstract][Full Text] [Related]
2. Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Song J; Guo W; Jiang F; Kang L; Zhou S Insect Biochem Mol Biol; 2013 Sep; 43(9):879-87. PubMed ID: 23792802 [TBL] [Abstract][Full Text] [Related]
3. Drosha, Dicer-1 and Argonaute-1 in the desert locust: phylogenetic analyses, transcript profiling and regulation during phase transition and feeding. Wynant N; Santos D; Subramanyam SH; Verlinden H; Vanden Broeck J J Insect Physiol; 2015 Apr; 75():20-9. PubMed ID: 25746231 [TBL] [Abstract][Full Text] [Related]
4. RNAi-mediated knockdown of Shade negatively affects ecdysone-20-hydroxylation in the desert locust, Schistocerca gregaria. Marchal E; Verlinden H; Badisco L; Van Wielendaele P; Vanden Broeck J J Insect Physiol; 2012 Jul; 58(7):890-6. PubMed ID: 22465741 [TBL] [Abstract][Full Text] [Related]
5. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Wynant N; Santos D; Verdonck R; Spit J; Van Wielendaele P; Vanden Broeck J Insect Biochem Mol Biol; 2014 Mar; 46():1-8. PubMed ID: 24418314 [TBL] [Abstract][Full Text] [Related]
6. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. Ren D; Cai Z; Song J; Wu Z; Zhou S Insect Mol Biol; 2014 Apr; 23(2):175-84. PubMed ID: 24308607 [TBL] [Abstract][Full Text] [Related]
7. Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust. Sugahara R; Saeki S; Jouraku A; Shiotsuki T; Tanaka S J Insect Physiol; 2015 Aug; 79():80-7. PubMed ID: 26092175 [TBL] [Abstract][Full Text] [Related]
8. The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. Luo Y; Wang X; Yu D; Kang L RNA Biol; 2012 May; 9(5):663-71. PubMed ID: 22614832 [TBL] [Abstract][Full Text] [Related]
9. Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria. Liu XJ; Sun YW; Li DQ; Li S; Ma EB; Zhang JZ Insect Sci; 2018 Apr; 25(2):211-221. PubMed ID: 27696733 [TBL] [Abstract][Full Text] [Related]
10. MicroRNA-dependent metamorphosis in hemimetabolan insects. Gomez-Orte E; Belles X Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21678-82. PubMed ID: 19966227 [TBL] [Abstract][Full Text] [Related]
11. A forward genetic screen to study mammalian RNA interference: essential role of RNase IIIa domain of Dicer1 in 3' strand cleavage of dsRNA in vivo. Ohishi K; Nakano T FEBS J; 2012 Mar; 279(5):832-43. PubMed ID: 22221880 [TBL] [Abstract][Full Text] [Related]
12. A bird's-eye view on the modern genetics workflow and its potential applicability to the locust problem. Bakkali M C R Biol; 2013 Aug; 336(8):375-83. PubMed ID: 24018194 [TBL] [Abstract][Full Text] [Related]
13. Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. Song TQ; Yang ML; Wang YL; Liu Q; Wang HM; Zhang J; Li T Insect Sci; 2016 Aug; 23(4):520-30. PubMed ID: 27430427 [TBL] [Abstract][Full Text] [Related]
14. Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae). Cristino AS; Tanaka ED; Rubio M; Piulachs MD; Belles X PLoS One; 2011 Apr; 6(4):e19350. PubMed ID: 21552535 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria. Liu X; Zhang H; Li S; Zhu KY; Ma E; Zhang J Insect Biochem Mol Biol; 2012 Dec; 42(12):902-10. PubMed ID: 23006725 [TBL] [Abstract][Full Text] [Related]
16. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Song J; Li W; Zhao H; Zhou S Insect Biochem Mol Biol; 2019 Mar; 106():39-46. PubMed ID: 30453026 [TBL] [Abstract][Full Text] [Related]
17. Discovering conserved insect microRNAs from expressed sequence tags. Jia Q; Lin K; Liang J; Yu L; Li F J Insect Physiol; 2010 Dec; 56(12):1763-9. PubMed ID: 20655920 [TBL] [Abstract][Full Text] [Related]
18. Mucin family genes are essential for the growth and development of the migratory locust, Locusta migratoria. Zhao X; Zhang J; Yang J; Niu N; Zhang J; Yang Q Insect Biochem Mol Biol; 2020 Aug; 123():103404. PubMed ID: 32428561 [TBL] [Abstract][Full Text] [Related]
19. Microarray-based annotation of the gut transcriptome of the migratory locust, Locusta migratoria. Spit J; Badisco L; Vergauwen L; Knapen D; Vanden Broeck J Insect Mol Biol; 2016 Dec; 25(6):745-756. PubMed ID: 27479692 [TBL] [Abstract][Full Text] [Related]
20. miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. Yang M; Wang Y; Jiang F; Song T; Wang H; Liu Q; Zhang J; Zhang J; Kang L PLoS Genet; 2016 Aug; 12(8):e1006257. PubMed ID: 27532544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]