These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23955892)

  • 1. Moth diversity in three biofuel crops and native prairie in Illinois.
    Harrison T; Berenbaum MR
    Insect Sci; 2013 Jun; 20(3):407-19. PubMed ID: 23955892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species diversity and persistence in restored and remnant tallgrass prairies of North America: a function of species' life history, habitat type, or sampling bias?
    Summerville KS
    J Anim Ecol; 2008 May; 77(3):487-94. PubMed ID: 18284475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of arthropod communities in bioenergy crop litter decomposition†.
    Zangerl AR; Miresmailli S; Nabity P; Lawrance A; Yanahan A; Mitchell CA; Anderson-Teixeira KJ; David MB; Berenbaum MR; DeLucia EH
    Insect Sci; 2013 Oct; 20(5):671-8. PubMed ID: 23956135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergy crops Miscanthus x giganteus and Panicum virgatum reduce growth and survivorship of Spodoptera frugiperda (Lepidoptera: Noctuidae).
    Nabity PD; Zangerl AR; Berenbaum MR; DeLucia EH
    J Econ Entomol; 2011 Apr; 104(2):459-64. PubMed ID: 21510193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel framework to classify marginal land for sustainable biomass feedstock production.
    Gopalakrishnan G; Cristina Negri M; Snyder SW
    J Environ Qual; 2011; 40(5):1593-600. PubMed ID: 21869522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.
    Qin Z; Zhuang Q; Zhu X; Cai X; Zhang X
    Environ Sci Technol; 2011 Dec; 45(24):10765-72. PubMed ID: 22085109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities.
    Schooler SS; McEvoy PB; Hammond P; Coombs EM
    Bull Entomol Res; 2009 Jun; 99(3):229-43. PubMed ID: 18947450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.
    Werling BP; Dickson TL; Isaacs R; Gaines H; Gratton C; Gross KL; Liere H; Malmstrom CM; Meehan TD; Ruan L; Robertson BA; Robertson GP; Schmidt TM; Schrotenboer AC; Teal TK; Wilson JK; Landis DA
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1652-7. PubMed ID: 24474791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops.
    Smith CM; David MB; Mitchell CA; Masters MD; Anderson-Teixeira KJ; Bernacchi CJ; Delucia EH
    J Environ Qual; 2013; 42(1):219-28. PubMed ID: 23673757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA.
    Joo E; Hussain MZ; Zeri M; Masters MD; Miller JN; Gomez-Casanovas N; DeLucia EH; Bernacchi CJ
    Plant Cell Environ; 2016 Sep; 39(9):1928-40. PubMed ID: 27043723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?
    Dickson TL; Gross KL
    PLoS One; 2015; 10(9):e0135253. PubMed ID: 26359662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative feeding and development of armyworm on switchgrass and corn, and its potential effects on switchgrass grown for biomass.
    Prasifka JR; Bradshaw JD; Lee ST; Gray ME
    J Econ Entomol; 2011 Oct; 104(5):1561-7. PubMed ID: 22066185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-negative biofuels from low-input high-diversity grassland biomass.
    Tilman D; Hill J; Lehman C
    Science; 2006 Dec; 314(5805):1598-600. PubMed ID: 17158327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Diversity of geometrid moth (Lepidoptera: Geometridae) in cropland and reforested semi-natural habitats at different altitudes of Bashang Plateau, Hebei Province of China].
    Duan MC; Liu YH; Wang CL; Axmacher JC; Li LT; Yu ZR
    Ying Yong Sheng Tai Xue Bao; 2012 Mar; 23(3):785-90. PubMed ID: 22720626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of native grass cover crops on beneficial and pest invertebrates in Australian vineyards.
    Danne A; Thomson LJ; Sharley DJ; Penfold CM; Hoffmann AA
    Environ Entomol; 2010 Jun; 39(3):970-8. PubMed ID: 20550812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems.
    Morris GP; Hu Z; Grabowski PP; Borevitz JO; de Graaff MA; Miller RM; Jastrow JD
    Glob Change Biol Bioenergy; 2016 Sep; 8(5):1000-1014. PubMed ID: 27668013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bird communities in future bioenergy landscapes of the Upper Midwest.
    Meehan TD; Hurlbert AH; Gratton C
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18533-8. PubMed ID: 20921398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofuels and biodiversity: principles for creating better policies for biofuel production.
    Groom MJ; Gray EM; Townsend PA
    Conserv Biol; 2008 Jun; 22(3):602-9. PubMed ID: 18261147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.