These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23955892)

  • 21. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.
    Femeena PV; Sudheer KP; Cibin R; Chaubey I
    J Environ Manage; 2018 Apr; 212():198-209. PubMed ID: 29432999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Testing and improving the effectiveness of trap crops for management of the diamondback moth Plutella xylostella (L.): a laboratory-based study.
    George DR; Collier R; Port G
    Pest Manag Sci; 2009 Nov; 65(11):1219-27. PubMed ID: 19588477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact assessment of the European biofuel directive on land use and biodiversity.
    Hellmann F; Verburg PH
    J Environ Manage; 2010 Jun; 91(6):1389-96. PubMed ID: 20227165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.
    Hunter MD; Kozlov MV; Itämies J; Pulliainen E; Bäck J; Kyrö EM; Niemelä P
    Glob Chang Biol; 2014 Jun; 20(6):1723-37. PubMed ID: 24421221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea.
    Choi SW
    Zoolog Sci; 2008 Jan; 25(1):53-8. PubMed ID: 18275245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems.
    Morris GP; Hu Z; Grabowski PP; Borevitz JO; de Graaff MA; Miller RM; Jastrow JD
    Glob Change Biol Bioenergy; 2016 Sep; 8(5):1000-1014. PubMed ID: 27668013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?
    Dickson TL; Gross KL
    PLoS One; 2015; 10(9):e0135253. PubMed ID: 26359662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contrasting effects of bioenergy crops on biodiversity.
    Haan NL; Benucci GNM; Fiser CM; Bonito G; Landis DA
    Sci Adv; 2023 Sep; 9(38):eadh7960. PubMed ID: 37738354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.
    Guo T; Cibin R; Chaubey I; Gitau M; Arnold JG; Srinivasan R; Kiniry JR; Engel BA
    Sci Total Environ; 2018 Feb; 613-614():724-735. PubMed ID: 28938215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review.
    Nsanganwimana F; Pourrut B; Mench M; Douay F
    J Environ Manage; 2014 Oct; 143():123-34. PubMed ID: 24905642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses.
    Sage RF; de Melo Peixoto M; Friesen P; Deen B
    J Exp Bot; 2015 Jul; 66(14):4195-212. PubMed ID: 25873658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass?
    Dohleman FG; Heaton EA; Leakey AD; Long SP
    Plant Cell Environ; 2009 Nov; 32(11):1525-37. PubMed ID: 19558624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of GM crops on biodiversity.
    Carpenter JE
    GM Crops; 2011; 2(1):7-23. PubMed ID: 21844695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of land use on the biodiversity integrity of the moist sub-biome of the grassland biome, South Africa.
    O'Connor TG; Kuyler P
    J Environ Manage; 2009 Jan; 90(1):384-95. PubMed ID: 18082314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil carbon sequestration or biofuel production: new land-use opportunities for mitigating climate over abandoned Soviet farmlands.
    Vuichard N; Ciais P; Wolf A
    Environ Sci Technol; 2009 Nov; 43(22):8678-83. PubMed ID: 20028070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Avian use of perennial biomass feedstocks as post-breeding and migratory stopover habitat.
    Robertson BA; Doran PJ; Loomis ER; Robertson JR; Schemske DW
    PLoS One; 2011 Mar; 6(3):e16941. PubMed ID: 21390274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Future landscape of renewable fuel resources: Current and future conservation and utilization of main biofuel crops in China.
    Cao B; Bai C; Zhang M; Lu Y; Gao P; Yang J; Xue Y; Li G
    Sci Total Environ; 2022 Feb; 806(Pt 4):150946. PubMed ID: 34655627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human impacts on regional avian diversity and abundance.
    Lepczyk CA; Flather CH; Radeloff VC; Pidgeon AM; Hammer RB; Liu J
    Conserv Biol; 2008 Apr; 22(2):405-16. PubMed ID: 18294300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic engineering of energy crops: a strategy for biofuel production in China.
    Xie G; Peng L
    J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodiversity and ecosystem stability in a decade-long grassland experiment.
    Tilman D; Reich PB; Knops JM
    Nature; 2006 Jun; 441(7093):629-32. PubMed ID: 16738658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.