These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23956086)

  • 1. [The principle of dRNA-seq and its applications in prokaryotic tran-scriptome analyses].
    Hou ZW; Wang Y; Gao H; Hou SW
    Yi Chuan; 2013 Aug; 35(8):983-91. PubMed ID: 23956086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori.
    Bischler T; Tan HS; Nieselt K; Sharma CM
    Methods; 2015 Sep; 86():89-101. PubMed ID: 26091613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq).
    Babski J; Haas KA; Näther-Schindler D; Pfeiffer F; Förstner KU; Hammelmann M; Hilker R; Becker A; Sharma CM; Marchfelder A; Soppa J
    BMC Genomics; 2016 Aug; 17(1):629. PubMed ID: 27519343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled Transcriptomics for Differential Expression Analysis and Determination of Transcription Start Sites: Design and Bioinformatics.
    Rodríguez-García A; Sola-Landa A; Pérez-Redondo R
    Methods Mol Biol; 2021; 2296():263-278. PubMed ID: 33977454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential RNA-seq: the approach behind and the biological insight gained.
    Sharma CM; Vogel J
    Curr Opin Microbiol; 2014 Jun; 19():97-105. PubMed ID: 25024085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Riboswitch discovery by combining RNA-seq and genome-wide identification of transcriptional start sites.
    Rosinski-Chupin I; Soutourina O; Martin-Verstraete I
    Methods Enzymol; 2014; 549():3-27. PubMed ID: 25432742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcript mapping based on dRNA-seq data.
    Bischler T; Kopf M; Voß B
    BMC Bioinformatics; 2014 Apr; 15():122. PubMed ID: 24780064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput detection of RNA processing in bacteria.
    Gill EE; Chan LS; Winsor GL; Dobson N; Lo R; Ho Sui SJ; Dhillon BK; Taylor PK; Shrestha R; Spencer C; Hancock REW; Unrau PJ; Brinkman FSL
    BMC Genomics; 2018 Mar; 19(1):223. PubMed ID: 29587634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data.
    Promworn Y; Kaewprommal P; Shaw PJ; Intarapanich A; Tongsima S; Piriyapongsa J
    PLoS One; 2017; 12(5):e0178483. PubMed ID: 28542466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TSSAR: TSS annotation regime for dRNA-seq data.
    Amman F; Wolfinger MT; Lorenz R; Hofacker IL; Stadler PF; Findeiß S
    BMC Bioinformatics; 2014 Mar; 15():89. PubMed ID: 24674136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating CRISPR RNA Biogenesis and Function Using RNA-seq.
    Heidrich N; Dugar G; Vogel J; Sharma CM
    Methods Mol Biol; 2015; 1311():1-21. PubMed ID: 25981463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Seq-Based Transcript Structure Analysis with TrBorderExt.
    Wang Y; Sun MA; White AP
    Methods Mol Biol; 2018; 1751():89-99. PubMed ID: 29508291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dRNA-seq transcriptional profiling of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis NRRL18488 and general analysis of the transcriptome.
    Bauer JS; Fillinger S; Förstner K; Herbig A; Jones AC; Flinspach K; Sharma C; Gross H; Nieselt K; Apel AK
    RNA Biol; 2017 Nov; 14(11):1617-1626. PubMed ID: 28665778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An empirical strategy to detect bacterial transcript structure from directional RNA-seq transcriptome data.
    Wang Y; MacKenzie KD; White AP
    BMC Genomics; 2015 May; 16(1):359. PubMed ID: 25947005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [RNA-Seq and its applications: a new technology for transcriptomics].
    Qi YX; Liu YB; Rong WH
    Yi Chuan; 2011 Nov; 33(11):1191-202. PubMed ID: 22120074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens.
    Prados J; Linder P; Redder P
    BMC Genomics; 2016 Nov; 17(1):849. PubMed ID: 27806702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.
    van der Meulen SB; de Jong A; Kok J
    RNA Biol; 2016; 13(3):353-66. PubMed ID: 26950529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identification and characterization of novel transcripts from RNA-seq data.
    Weirick T; Militello G; Müller R; John D; Dimmeler S; Uchida S
    Brief Bioinform; 2016 Jul; 17(4):678-85. PubMed ID: 26283677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing.
    Bayega A; Fahiminiya S; Oikonomopoulos S; Ragoussis J
    Methods Mol Biol; 2018; 1783():209-241. PubMed ID: 29767365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome.
    Ettwiller L; Buswell J; Yigit E; Schildkraut I
    BMC Genomics; 2016 Mar; 17():199. PubMed ID: 26951544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.