These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23956206)

  • 1. Designing cost-effective biopharmaceutical facilities using mixed-integer optimization.
    Liu S; Simaria AS; Farid SS; Papageorgiou LG
    Biotechnol Prog; 2013; 29(6):1472-83. PubMed ID: 23956206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decisional tool to assess current and future process robustness in an antibody purification facility.
    Stonier A; Simaria AS; Smith M; Farid SS
    Biotechnol Prog; 2012 Jul; 28(4):1019-28. PubMed ID: 22641562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Very large scale monoclonal antibody purification: the case for conventional unit operations.
    Kelley B
    Biotechnol Prog; 2007; 23(5):995-1008. PubMed ID: 17887772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of batch and continuous multi-column protein A capture processes by optimal design.
    Baur D; Angarita M; Müller-Späth T; Steinebach F; Morbidelli M
    Biotechnol J; 2016 Jul; 11(7):920-31. PubMed ID: 26992151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.
    Dizon-Maspat J; Bourret J; D'Agostini A; Li F
    Biotechnol Bioeng; 2012 Apr; 109(4):962-70. PubMed ID: 22094920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoclonal antibody purification and its progression to commercial scale.
    Chahar DS; Ravindran S; Pisal SS
    Biologicals; 2020 Jan; 63():1-13. PubMed ID: 31558429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.
    Siganporia CC; Ghosh S; Daszkowski T; Papageorgiou LG; Farid SS
    Biotechnol Prog; 2014; 30(3):594-606. PubMed ID: 24376262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities.
    Chmielowski RA; Mathiasson L; Blom H; Go D; Ehring H; Khan H; Li H; Cutler C; Lacki K; Tugcu N; Roush D
    J Chromatogr A; 2017 Dec; 1526():58-69. PubMed ID: 29078985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.
    Pollock J; Bolton G; Coffman J; Ho SV; Bracewell DG; Farid SS
    J Chromatogr A; 2013 Apr; 1284():17-27. PubMed ID: 23453463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tandem laboratory scale protein purification process using Protein A affinity and anion exchange chromatography operated in a weak partitioning mode.
    Shamashkin M; Godavarti R; Iskra T; Coffman J
    Biotechnol Bioeng; 2013 Oct; 110(10):2655-63. PubMed ID: 23633385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies.
    Xenopoulos A
    J Biotechnol; 2015 Nov; 213():42-53. PubMed ID: 25959171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of stochastic simulation with multivariate analysis: short-term facility fit prediction.
    Stonier A; Pain D; Westlake A; Hutchinson N; Thornhill NF; Farid SS
    Biotechnol Prog; 2013; 29(2):368-77. PubMed ID: 23281334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture.
    Allmendinger R; Simaria AS; Turner R; Farid SS
    J Chem Technol Biotechnol; 2014 Oct; 89(10):1481-1490. PubMed ID: 25506115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data mining for rapid prediction of facility fit and debottlenecking of biomanufacturing facilities.
    Yang Y; Farid SS; Thornhill NF
    J Biotechnol; 2014 Jun; 179():17-25. PubMed ID: 24637375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process and economic evaluation for monoclonal antibody purification using a membrane-only process.
    Varadaraju H; Schneiderman S; Zhang L; Fong H; Menkhaus TJ
    Biotechnol Prog; 2011; 27(5):1297-305. PubMed ID: 21618725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process cost and facility considerations in the selection of primary cell culture clarification technology.
    Felo M; Christensen B; Higgins J
    Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane adsorbers as purification tools for monoclonal antibody purification.
    Boi C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 848(1):19-27. PubMed ID: 16996324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents.
    Toueille M; Uzel A; Depoisier JF; Gantier R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):836-43. PubMed ID: 21439915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal synthesis of protein purification processes.
    Vásquez-Alvarez E; Lienqueo ME; Pinto JM
    Biotechnol Prog; 2001; 17(4):685-96. PubMed ID: 11485430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.
    Wang L; Dembecki J; Jaffe NE; O'Mara BW; Cai H; Sparks CN; Zhang J; Laino SG; Russell RJ; Wang M
    J Chromatogr A; 2013 Sep; 1308():86-95. PubMed ID: 23953712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.