These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 23956261)
21. Tomato Glutamate Decarboxylase Genes SlGAD2 and SlGAD3 Play Key Roles in Regulating γ-Aminobutyric Acid Levels in Tomato (Solanum lycopersicum). Takayama M; Koike S; Kusano M; Matsukura C; Saito K; Ariizumi T; Ezura H Plant Cell Physiol; 2015 Aug; 56(8):1533-45. PubMed ID: 26009591 [TBL] [Abstract][Full Text] [Related]
22. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Ferreira e Silva GF; Silva EM; Azevedo Mda S; Guivin MA; Ramiro DA; Figueiredo CR; Carrer H; Peres LE; Nogueira FT Plant J; 2014 May; 78(4):604-18. PubMed ID: 24580734 [TBL] [Abstract][Full Text] [Related]
23. Glycoside hydrolase PpGH28BG1 modulates benzaldehyde metabolism and enhances fruit aroma and immune responses in peach. Jiang D; Han Q; Su Y; Cao X; Wu B; Wei C; Chen K; Li X; Zhang B Plant Physiol; 2024 Oct; 196(2):1444-1459. PubMed ID: 39140299 [TBL] [Abstract][Full Text] [Related]
24. Effect of eugenol and guaiacol application on tomato aroma composition determined by headspace stir bar sorptive extraction. Pardo-García AI; Martínez-Gil AM; López-Córcoles H; Zalacain A; Salinas R J Sci Food Agric; 2013 Mar; 93(5):1147-55. PubMed ID: 22952170 [TBL] [Abstract][Full Text] [Related]
25. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Zhu M; Chen G; Zhou S; Tu Y; Wang Y; Dong T; Hu Z Plant Cell Physiol; 2014 Jan; 55(1):119-35. PubMed ID: 24265273 [TBL] [Abstract][Full Text] [Related]
26. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles. Gao Y; Lin Y; Xu M; Bian H; Zhang C; Wang J; Wang H; Xu Y; Niu Q; Zuo J; Fu DQ; Pan Y; Chen K; Klee H; Lang Z; Zhang B New Phytol; 2022 Sep; 235(5):1913-1926. PubMed ID: 35686614 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide characterization of cytochrome P450 genes reveals the potential roles in fruit ripening and response to cold stress in tomato. Tang M; Zhang W; Lin R; Li L; He L; Yu J; Zhou Y Physiol Plant; 2024; 176(3):e14332. PubMed ID: 38710502 [TBL] [Abstract][Full Text] [Related]
28. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. Muñoz-Bertomeu J; Miedes E; Lorences EP J Plant Physiol; 2013 Sep; 170(13):1194-201. PubMed ID: 23628624 [TBL] [Abstract][Full Text] [Related]
29. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. Neily MH; Matsukura C; Maucourt M; Bernillon S; Deborde C; Moing A; Yin YG; Saito T; Mori K; Asamizu E; Rolin D; Moriguchi T; Ezura H J Plant Physiol; 2011 Feb; 168(3):242-52. PubMed ID: 20708298 [TBL] [Abstract][Full Text] [Related]
30. Noncoding RNAs: functional regulatory factors in tomato fruit ripening. Ma L; Mu J; Grierson D; Wang Y; Gao L; Zhao X; Zhu B; Luo Y; Shi K; Wang Q; Zuo J Theor Appl Genet; 2020 May; 133(5):1753-1762. PubMed ID: 32211918 [TBL] [Abstract][Full Text] [Related]
31. Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato. Zhang T; Liang J; Wang M; Li D; Liu Y; Chen THH; Yang X Plant Sci; 2019 Mar; 280():355-366. PubMed ID: 30824015 [TBL] [Abstract][Full Text] [Related]
32. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Sagar M; Chervin C; Mila I; Hao Y; Roustan JP; Benichou M; Gibon Y; Biais B; Maury P; Latché A; Pech JC; Bouzayen M; Zouine M Plant Physiol; 2013 Mar; 161(3):1362-74. PubMed ID: 23341361 [TBL] [Abstract][Full Text] [Related]
33. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Reuscher S; Akiyama M; Yasuda T; Makino H; Aoki K; Shibata D; Shiratake K Plant Cell Physiol; 2014 Jun; 55(6):1123-41. PubMed ID: 24833026 [TBL] [Abstract][Full Text] [Related]
34. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Sravankumar T; Akash ; Naik N; Kumar R Plant Mol Biol; 2018 Nov; 98(4-5):455-469. PubMed ID: 30367324 [TBL] [Abstract][Full Text] [Related]
35. Identification, cloning and characterization of the tomato TCP transcription factor family. Parapunova V; Busscher M; Busscher-Lange J; Lammers M; Karlova R; Bovy AG; Angenent GC; de Maagd RA BMC Plant Biol; 2014 Jun; 14():157. PubMed ID: 24903607 [TBL] [Abstract][Full Text] [Related]
36. Detection of Quantitative Trait Loci (QTL) Associated with the Fruit Morphology of Tomato. Adhikari P; McNellie J; Panthee DR Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32987633 [TBL] [Abstract][Full Text] [Related]
37. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Itkin M; Rogachev I; Alkan N; Rosenberg T; Malitsky S; Masini L; Meir S; Iijima Y; Aoki K; de Vos R; Prusky D; Burdman S; Beekwilder J; Aharoni A Plant Cell; 2011 Dec; 23(12):4507-25. PubMed ID: 22180624 [TBL] [Abstract][Full Text] [Related]
38. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Pattison RJ; Catalá C Plant J; 2012 May; 70(4):585-98. PubMed ID: 22211518 [TBL] [Abstract][Full Text] [Related]
39. Changes in volatiles and glycosides during fruit maturation of two contrasted tomato ( Solanum lycopersicum ) lines. Birtić S; Ginies C; Causse M; Renard CM; Page D J Agric Food Chem; 2009 Jan; 57(2):591-8. PubMed ID: 19154163 [TBL] [Abstract][Full Text] [Related]
40. An InDel in the Promoter of Ye J; Wang X; Hu T; Zhang F; Wang B; Li C; Yang T; Li H; Lu Y; Giovannoni JJ; Zhang Y; Ye Z Plant Cell; 2017 Sep; 29(9):2249-2268. PubMed ID: 28814642 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]