These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 23956387)
1. Benchmarking various green fluorescent protein variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for live cell imaging. Overkamp W; Beilharz K; Detert Oude Weme R; Solopova A; Karsens H; Kovács Á; Kok J; Kuipers OP; Veening JW Appl Environ Microbiol; 2013 Oct; 79(20):6481-90. PubMed ID: 23956387 [TBL] [Abstract][Full Text] [Related]
2. Red Fluorescent Proteins for Gene Expression and Protein Localization Studies in Streptococcus pneumoniae and Efficient Transformation with DNA Assembled via the Gibson Assembly Method. Beilharz K; van Raaphorst R; Kjos M; Veening JW Appl Environ Microbiol; 2015 Oct; 81(20):7244-52. PubMed ID: 26253684 [TBL] [Abstract][Full Text] [Related]
3. Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Eberhardt A; Hoyland CN; Vollmer D; Bisle S; Cleverley RM; Johnsborg O; Håvarstein LS; Lewis RJ; Vollmer W Microb Drug Resist; 2012 Jun; 18(3):240-55. PubMed ID: 22432711 [TBL] [Abstract][Full Text] [Related]
4. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. Kilstrup M; Martinussen J J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488 [TBL] [Abstract][Full Text] [Related]
5. Sequence of a Lactococcus lactis DNA fragment homologous to the recF gene of Bacillus subtilis. MacCormick CA; Griffin HG; Gasson MJ Gene; 1996 Apr; 170(1):151-2. PubMed ID: 8621080 [TBL] [Abstract][Full Text] [Related]
6. Use of green fluorescent protein to monitor cell envelope stress in Lactococcus lactis. Campelo AB; Rodríguez A; Martínez B Appl Environ Microbiol; 2010 Feb; 76(3):978-81. PubMed ID: 19948854 [TBL] [Abstract][Full Text] [Related]
7. Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions. Kjos M; Aprianto R; Fernandes VE; Andrew PW; van Strijp JA; Nijland R; Veening JW J Bacteriol; 2015 Mar; 197(5):807-18. PubMed ID: 25512311 [TBL] [Abstract][Full Text] [Related]
8. Characterization of OpuA, a glycine-betaine uptake system of Lactococcus lactis. Bouvier J; Bordes P; Romeo Y; Fourçans A; Bouvier I; Gutierrez C J Mol Microbiol Biotechnol; 2000 Apr; 2(2):199-205. PubMed ID: 10939245 [TBL] [Abstract][Full Text] [Related]
9. Construction of the mobilizable plasmid pMV158GFP, a derivative of pMV158 that carries the gene encoding the green fluorescent protein. Nieto C; Espinosa M Plasmid; 2003 May; 49(3):281-5. PubMed ID: 12749839 [TBL] [Abstract][Full Text] [Related]
10. Isolation, sequence and expression in Escherichia coli, Bacillus subtilis and Lactococcus lactis of the DNase (streptodornase)-encoding gene from Streptococcus equisimilis H46A. Wolinowska R; Cegłowski P; Kok J; Venema G Gene; 1991 Sep; 106(1):115-9. PubMed ID: 1937032 [TBL] [Abstract][Full Text] [Related]
11. Complementation of the Lactococcus lactis secretion machinery with Bacillus subtilis SecDF improves secretion of staphylococcal nuclease. Nouaille S; Morello E; Cortez-Peres N; Le Loir Y; Commissaire J; Gratadoux JJ; Poumerol E; Gruss A; Langella P Appl Environ Microbiol; 2006 Mar; 72(3):2272-9. PubMed ID: 16517687 [TBL] [Abstract][Full Text] [Related]
12. Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Petranovic D; Guédon E; Sperandio B; Delorme C; Ehrlich D; Renault P Mol Microbiol; 2004 Jul; 53(2):613-21. PubMed ID: 15228538 [TBL] [Abstract][Full Text] [Related]
13. Genetic and molecular analysis of the rpoD gene from Lactococcus lactis. Araya T; Ishibashi N; Shimamura S; Tanaka K; Takahashi H Biosci Biotechnol Biochem; 1993 Jan; 57(1):88-92. PubMed ID: 7503808 [TBL] [Abstract][Full Text] [Related]
14. Optimization of fluorescent tools for cell biology studies in Gram-positive bacteria. Catalão MJ; Figueiredo J; Henriques MX; Gomes JP; Filipe SR PLoS One; 2014; 9(12):e113796. PubMed ID: 25464377 [TBL] [Abstract][Full Text] [Related]
15. The -16 region of Bacillus subtilis and other gram-positive bacterial promoters. Voskuil MI; Chambliss GH Nucleic Acids Res; 1998 Aug; 26(15):3584-90. PubMed ID: 9671823 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. van der Vossen JM; van der Lelie D; Venema G Appl Environ Microbiol; 1987 Oct; 53(10):2452-7. PubMed ID: 2447829 [TBL] [Abstract][Full Text] [Related]
17. The peptidyl-prolyl isomerase motif is lacking in PmpA, the PrsA-like protein involved in the secretion machinery of Lactococcus lactis. Drouault S; Anba J; Bonneau S; Bolotin A; Ehrlich SD; Renault P Appl Environ Microbiol; 2002 Aug; 68(8):3932-42. PubMed ID: 12147493 [TBL] [Abstract][Full Text] [Related]
18. Influence of global gene regulatory networks on single cell heterogeneity of green fluorescent protein production in Bacillus subtilis. Cao H; Kuipers OP Microb Cell Fact; 2018 Aug; 17(1):134. PubMed ID: 30165856 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of gene expression in Streptococcus pneumoniae and Lactococcus lactis. López de Felipe F; Corrales MA; López P FEMS Microbiol Lett; 1994 Oct; 122(3):289-95. PubMed ID: 7988870 [TBL] [Abstract][Full Text] [Related]
20. Development of Lactococcus lactis encoding fluorescent proteins, GFP, mCherry and iRFP regulated by the nisin-controlled gene expression system. Martinez-Jaramillo E; Garza-Morales R; Loera-Arias MJ; Saucedo-Cardenas O; Montes-de-Oca-Luna R; McNally LR; Gomez-Gutierrez JG Biotech Histochem; 2017; 92(3):167-174. PubMed ID: 28318334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]