BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2395647)

  • 1. Thermal denaturation profiles and gel mobility shift analysis of oligodeoxynucleotide triplexes.
    Shea RG; Ng P; Bischofberger N
    Nucleic Acids Res; 1990 Aug; 18(16):4859-66. PubMed ID: 2395647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs.
    Evertsz EM; Rippe K; Jovin TM
    Nucleic Acids Res; 1994 Aug; 22(16):3293-303. PubMed ID: 8078763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of oligodeoxyribonucleotide phosphorothioate pyrimidine strands on triplex formation.
    Kim SG; Tsukahara S; Yokoyama S; Takaku H
    FEBS Lett; 1992 Dec; 314(1):29-32. PubMed ID: 1451802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence dependent electrophoretic mobilities and melting temperatures for A-T containing oligodeoxyribonucleotides.
    Wilson WD; Zuo ET; Jones RL; Zon GL; Baumstark BR
    Nucleic Acids Res; 1987 Jan; 15(1):105-18. PubMed ID: 3822802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior.
    Manzini G; Xodo LE; Gasparotto D; Quadrifoglio F; van der Marel GA; van Boom JH
    J Mol Biol; 1990 Jun; 213(4):833-43. PubMed ID: 2359124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic mobility is a reporter of hairpin structure in single-stranded DNA oligomers.
    Stellwagen E; Abdulla A; Dong Q; Stellwagen NC
    Biochemistry; 2007 Sep; 46(38):10931-41. PubMed ID: 17764160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.
    Xodo LE; Alunni-Fabbroni M; Manzini G
    J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the third-strand orientation on the thermodynamic stability of the four-way DNA junction.
    Makube N; Klump HH
    Arch Biochem Biophys; 2001 Sep; 393(1):1-13. PubMed ID: 11516156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence dependent effects in methylphosphonate deoxyribonucleotide double and triple helical complexes.
    Kibler-Herzog L; Kell B; Zon G; Shinozuka K; Mizan S; Wilson WD
    Nucleic Acids Res; 1990 Jun; 18(12):3545-55. PubMed ID: 2362807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions.
    Riesner D; Steger G; Zimmat R; Owens RA; Wagenhöfer M; Hillen W; Vollbach S; Henco K
    Electrophoresis; 1989; 10(5-6):377-89. PubMed ID: 2475340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel stranded duplex DNA.
    Ramsing NB; Jovin TM
    Nucleic Acids Res; 1988 Jul; 16(14A):6659-76. PubMed ID: 3399411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of nucleotide substitution on DNA denaturation profiles.
    Razlutskii IV; Shlyakhtenko LS; Lyubchenko YuL
    Nucleic Acids Res; 1987 Aug; 15(16):6665-76. PubMed ID: 2819824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices.
    Pilch DS; Brousseau R; Shafer RH
    Nucleic Acids Res; 1990 Oct; 18(19):5743-50. PubMed ID: 2216768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding of a branched double-helical DNA three-way junction with triple-helical ends.
    Hüsler PL; Klump HH
    Arch Biochem Biophys; 1994 Aug; 313(1):29-38. PubMed ID: 8053683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a triplex DNA-binding protein from human cells.
    Guieysse AL; Praseuth D; Hélène C
    J Mol Biol; 1997 Mar; 267(2):289-98. PubMed ID: 9096226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA chain length markers and the influence of base composition on electrophoretic mobility of oligodeoxyribonucleotides in polyacrylamide-gels.
    Frank R; Köster H
    Nucleic Acids Res; 1979; 6(6):2069-87. PubMed ID: 461182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.