These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 23956671)
1. Isolation and Identification of Mushroom Pathogens from Agrocybe aegerita. Choi IY; Choi JN; Sharma PK; Lee WH Mycobiology; 2010 Dec; 38(4):310-5. PubMed ID: 23956671 [TBL] [Abstract][Full Text] [Related]
2. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Komon-Zelazowska M; Bissett J; Zafari D; Hatvani L; Manczinger L; Woo S; Lorito M; Kredics L; Kubicek CP; Druzhinina IS Appl Environ Microbiol; 2007 Nov; 73(22):7415-26. PubMed ID: 17827333 [TBL] [Abstract][Full Text] [Related]
3. Green Mold Diseases of Agaricus and Pleurotus spp. Are Caused by Related but Phylogenetically Different Trichoderma Species. Hatvani L; Antal Z; Manczinger L; Szekeres A; Druzhinina IS; Kubicek CP; Nagy A; Nagy E; Vágvölgyi C; Kredics L Phytopathology; 2007 Apr; 97(4):532-7. PubMed ID: 18943294 [TBL] [Abstract][Full Text] [Related]
4. Molecular Markers for Detecting a Wide Range of Lee SH; Jung HJ; Hong SB; Choi JI; Ryu JS Mycobiology; 2020 Jul; 48(4):313-320. PubMed ID: 32952414 [TBL] [Abstract][Full Text] [Related]
5. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. Kredics L; Kocsubé S; Nagy L; Komoń-Zelazowska M; Manczinger L; Sajben E; Nagy A; Vágvölgyi C; Kubicek CP; Druzhinina IS; Hatvani L FEMS Microbiol Lett; 2009 Nov; 300(1):58-67. PubMed ID: 19735461 [TBL] [Abstract][Full Text] [Related]
6. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. Wang G; Cao X; Ma X; Guo M; Liu C; Yan L; Bian Y Microbiologyopen; 2016 Aug; 5(4):709-18. PubMed ID: 27147196 [TBL] [Abstract][Full Text] [Related]
7. The first report on mushroom green mould disease in Croatia. Hatvani L; Sabolić P; Kocsubé S; Kredics L; Czifra D; Vágvölgyi C; Kaliterna J; Ivić D; Đermić E; Kosalec I Arh Hig Rada Toksikol; 2012 Dec; 63(4):481-7. PubMed ID: 23334043 [TBL] [Abstract][Full Text] [Related]
8. In Vitro Antagonistic Characteristics of Bacilli Isolates against Trichoderma spp. and Three Species of Mushrooms. Kim WG; Weon HY; Seok SJ; Lee KH Mycobiology; 2008 Dec; 36(4):266-9. PubMed ID: 23997638 [TBL] [Abstract][Full Text] [Related]
9. Molecular Phylogenetic Analyses of Biological Control Strains of Trichoderma harzianum and Other Biotypes of Trichoderma spp. Associated with Mushroom Green Mold. Ospina-Giraldo MD; Royse DJ; Chen X; Romaine CP Phytopathology; 1999 Apr; 89(4):308-13. PubMed ID: 18944776 [TBL] [Abstract][Full Text] [Related]
10. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. Gupta DK; Rühl M; Mishra B; Kleofas V; Hofrichter M; Herzog R; Pecyna MJ; Sharma R; Kellner H; Hennicke F; Thines M BMC Genomics; 2018 Jan; 19(1):48. PubMed ID: 29334897 [TBL] [Abstract][Full Text] [Related]
11. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Kubicek CP; Bissett J; Druzhinina I; Kullnig-Gradinger C; Szakacs G Fungal Genet Biol; 2003 Apr; 38(3):310-9. PubMed ID: 12684020 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. Orban A; Weber A; Herzog R; Hennicke F; Rühl M BMC Genomics; 2021 May; 22(1):324. PubMed ID: 33947322 [TBL] [Abstract][Full Text] [Related]
13. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Błaszczyk L; Siwulski M; Sobieralski K; Frużyńska-Jóźwiak D Folia Microbiol (Praha); 2013 Jul; 58(4):325-33. PubMed ID: 23192526 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of Luković J; Milijašević-Marčić S; Hatvani L; Kredics L; Szűcs A; Vágvölgyi C; Duduk N; Vico I; Potočnik I J Environ Sci Health B; 2021; 56(1):54-63. PubMed ID: 33156729 [TBL] [Abstract][Full Text] [Related]
15. Role of Bacillus spp. in antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates. Velázquez-Cedeño M; Farnet AM; Mata G; Savoie JM Bioresour Technol; 2008 Oct; 99(15):6966-73. PubMed ID: 18295481 [TBL] [Abstract][Full Text] [Related]
16. Molecular identification and antimicrobial activities of some wild Egyptian mushrooms: Bjerkandera adusta as a promising source of bioactive antimicrobial phenolic compounds. Soliman ERS; El-Sayed H J Genet Eng Biotechnol; 2021 Jul; 19(1):106. PubMed ID: 34279789 [TBL] [Abstract][Full Text] [Related]
17. Characterization and fungicide sensitivity of Li X; Sossah FL; Tuo Y; Hu J; Wei Q; Li S; Rong N; Wiafe-Kwagyan M; Li C; Zhang B; Li X; Li Y Front Microbiol; 2023; 14():1264699. PubMed ID: 37928660 [TBL] [Abstract][Full Text] [Related]
18. Trichoderma harzianum metabolites pre-adapt mushrooms to Trichoderma aggressivum antagonism. Savoie JM; Mata G Mycologia; 2003; 95(2):191-9. PubMed ID: 21156605 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Hermosa MR; Grondona I; Iturriaga EA; Diaz-Minguez JM; Castro C; Monte E; Garcia-Acha I Appl Environ Microbiol; 2000 May; 66(5):1890-8. PubMed ID: 10788356 [TBL] [Abstract][Full Text] [Related]
20. Species diversity of Trichoderma in Poland. Błaszczyk L; Popiel D; Chełkowski J; Koczyk G; Samuels GJ; Sobieralski K; Siwulski M J Appl Genet; 2011 May; 52(2):233-43. PubMed ID: 21465156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]