These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 23956793)
1. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks. Haberl H Glob Change Biol Bioenergy; 2013 Jul; 5(4):351-357. PubMed ID: 23956793 [TBL] [Abstract][Full Text] [Related]
2. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice? Kalt G; Mayer A; Theurl MC; Lauk C; Erb KH; Haberl H Glob Change Biol Bioenergy; 2019 Nov; 11(11):1283-1297. PubMed ID: 31762785 [TBL] [Abstract][Full Text] [Related]
3. Benefit analysis of multi-approach biomass energy utilization toward carbon neutrality. Wang J; Fu J; Zhao Z; Bing L; Xi F; Wang F; Dong J; Wang S; Lin G; Yin Y; Hu Q Innovation (Camb); 2023 May; 4(3):100423. PubMed ID: 37181230 [TBL] [Abstract][Full Text] [Related]
4. Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Haberl H; Sprinz D; Bonazountas M; Cocco P; Desaubies Y; Henze M; Hertel O; Johnson RK; Kastrup U; Laconte P; Lange E; Novak P; Paavola J; Reenberg A; van den Hove S; Vermeire T; Wadhams P; Searchinger T Energy Policy; 2012 Jun; 45-222(5):18-23. PubMed ID: 23576835 [TBL] [Abstract][Full Text] [Related]
5. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. Whitaker J; Field JL; Bernacchi CJ; Cerri CEP; Ceulemans R; Davies CA; DeLucia EH; Donnison IS; McCalmont JP; Paustian K; Rowe RL; Smith P; Thornley P; McNamara NP Glob Change Biol Bioenergy; 2018 Mar; 10(3):150-164. PubMed ID: 29497458 [TBL] [Abstract][Full Text] [Related]
6. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland. Clarke R; Sosa A; Murphy F Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120 [TBL] [Abstract][Full Text] [Related]
7. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
8. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR; Del Grosso SJ; Parton WJ Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388 [TBL] [Abstract][Full Text] [Related]
9. Impact of Biogenic Carbon Neutrality Assumption for Achieving a Net-Zero Emission Target: Insights from a Techno-Economic Analysis. Kouchaki-Penchah H; Bahn O; Vaillancourt K; Moreau L; Thiffault E; Levasseur A Environ Sci Technol; 2023 Jul; 57(29):10615-10628. PubMed ID: 37432042 [TBL] [Abstract][Full Text] [Related]
10. Cumulative global forest carbon implications of regional bioenergy expansion policies. Kim SJ; Baker JS; Sohngen BL; Shell M Resour Energy Econ; 2018 Aug; 53():198-219. PubMed ID: 30245551 [TBL] [Abstract][Full Text] [Related]
11. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments. Kelsey KC; Barnes KL; Ryan MG; Neff JC Carbon Balance Manag; 2014; 9():6. PubMed ID: 25187788 [TBL] [Abstract][Full Text] [Related]
12. Sustainable bioenergy contributes to cost-effective climate change mitigation in China. Xu Y; Smith P; Qin Z iScience; 2024 Jul; 27(7):110232. PubMed ID: 39021785 [TBL] [Abstract][Full Text] [Related]
13. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974 [TBL] [Abstract][Full Text] [Related]
14. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
15. Assessing the Returns to Land and Greenhouse Gas Savings from Producing Energy Crops on Conservation Reserve Program Land. Chen L; Blanc-Betes E; Hudiburg TW; Hellerstein D; Wallander S; DeLucia EH; Khanna M Environ Sci Technol; 2021 Jan; 55(2):1301-1309. PubMed ID: 33410666 [TBL] [Abstract][Full Text] [Related]
16. Greenhouse gas mitigation on marginal land: a quantitative review of the relative benefits of forest recovery versus biofuel production. Evans SG; Ramage BS; DiRocco TL; Potts MD Environ Sci Technol; 2015 Feb; 49(4):2503-11. PubMed ID: 25582654 [TBL] [Abstract][Full Text] [Related]
17. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Kang Y; Yang Q; Bartocci P; Wei H; Liu SS; Wu Z; Zhou H; Yang H; Fantozzi F; Chen H Renew Sustain Energy Rev; 2020 Jul; 127():109842. PubMed ID: 34234613 [TBL] [Abstract][Full Text] [Related]
18. Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services. Potma Gonçalves DR; Carlos de Moraes Sá J; Mishra U; Ferreira Furlan FJ; Ferreira LA; Inagaki TM; Romaniw J; de Oliveira Ferreira A; Briedis C Environ Pollut; 2018 Dec; 243(Pt B):940-952. PubMed ID: 30248602 [TBL] [Abstract][Full Text] [Related]
19. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Gaunt JL; Lehmann J Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980 [TBL] [Abstract][Full Text] [Related]
20. The future of bioenergy. Reid WV; Ali MK; Field CB Glob Chang Biol; 2020 Jan; 26(1):274-286. PubMed ID: 31642554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]