These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 23957573)

  • 1. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation.
    Kärkäs MD; Johnston EV; Verho O; Akermark B
    Acc Chem Res; 2014 Jan; 47(1):100-11. PubMed ID: 23957573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic water oxidation by a molecular ruthenium complex: unexpected generation of a single-site water oxidation catalyst.
    Rabten W; Kärkäs MD; Åkermark T; Chen H; Liao RZ; Tinnis F; Sun J; Siegbahn PE; Andersson PG; Åkermark B
    Inorg Chem; 2015 May; 54(10):4611-20. PubMed ID: 25945608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks.
    Kärkäs MD; Åkermark B
    Chem Rec; 2016 Apr; 16(2):940-63. PubMed ID: 26991306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-splitting catalysis and solar fuel devices: artificial leaves on the move.
    Joya KS; Joya YF; Ocakoglu K; van de Krol R
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10426-37. PubMed ID: 23955876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular Homogeneous Chromophore-Catalyst Assemblies.
    Mulfort KL; Utschig LM
    Acc Chem Res; 2016 May; 49(5):835-43. PubMed ID: 27104312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling light-driven water oxidation via a low-energy RuIV=O intermediate.
    Lewandowska-Andralojc A; Polyansky DE; Zong R; Thummel RP; Fujita E
    Phys Chem Chem Phys; 2013 Sep; 15(33):14058-68. PubMed ID: 23860663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron injection dynamics in high-potential porphyrin photoanodes.
    Milot RL; Schmuttenmaer CA
    Acc Chem Res; 2015 May; 48(5):1423-31. PubMed ID: 25938858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity.
    Arafa WA; Kärkäs MD; Lee BL; Åkermark T; Liao RZ; Berends HM; Messinger J; Siegbahn PE; Åkermark B
    Phys Chem Chem Phys; 2014 Jun; 16(24):11950-64. PubMed ID: 24554036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-Initiated Graft Polymerization of Acrylic Acid onto Fluorine-Doped Tin Oxide as a Platform for Immobilization of Water-Oxidation Catalysts.
    Badiei YM; Traba C; Rosales R; Rojas AL; Amaya C; Shahid M; Vera-Rolong C; Concepcion JJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14077-14090. PubMed ID: 33751889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of water oxidation from the blue dimer to photosystem II.
    Liu F; Concepcion JJ; Jurss JW; Cardolaccia T; Templeton JL; Meyer TJ
    Inorg Chem; 2008 Mar; 47(6):1727-52. PubMed ID: 18330966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced water oxidation by a tetraruthenium polyoxometalate catalyst: ion-pairing and primary processes with Ru(bpy)3(2+) photosensitizer.
    Natali M; Orlandi M; Berardi S; Campagna S; Bonchio M; Sartorel A; Scandola F
    Inorg Chem; 2012 Jul; 51(13):7324-31. PubMed ID: 22686248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.