These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 23957641)
1. Location of the bacteriophage P22 coat protein C-terminus provides opportunities for the design of capsid-based materials. Servid A; Jordan P; O'Neil A; Prevelige P; Douglas T Biomacromolecules; 2013 Sep; 14(9):2989-95. PubMed ID: 23957641 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials. Wang Y; Douglas T Acc Chem Res; 2022 May; 55(10):1349-1359. PubMed ID: 35507643 [TBL] [Abstract][Full Text] [Related]
3. A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important Intercapsomer Contacts Required for Procapsid Assembly. D'Lima NG; Teschke CM J Virol; 2015 Oct; 89(20):10569-79. PubMed ID: 26269173 [TBL] [Abstract][Full Text] [Related]
4. Of capsid structure and stability: The partnership between charged residues of E-loop and P-domain of the bacteriophage P22 coat protein. Asija K; Teschke CM Virology; 2019 Aug; 534():45-53. PubMed ID: 31176063 [TBL] [Abstract][Full Text] [Related]
5. NMR assignments for the insertion domain of bacteriophage CUS-3 coat protein. Tripler TN; Maciejewski MW; Teschke CM; Alexandrescu AT Biomol NMR Assign; 2015 Oct; 9(2):333-6. PubMed ID: 25694158 [TBL] [Abstract][Full Text] [Related]
6. The role of the coat protein A-domain in p22 bacteriophage maturation. Morris DS; Prevelige PE Viruses; 2014 Jul; 6(7):2708-22. PubMed ID: 25025835 [TBL] [Abstract][Full Text] [Related]
7. Symmetry Controlled, Genetic Presentation of Bioactive Proteins on the P22 Virus-like Particle Using an External Decoration Protein. Schwarz B; Madden P; Avera J; Gordon B; Larson K; Miettinen HM; Uchida M; LaFrance B; Basu G; Rynda-Apple A; Douglas T ACS Nano; 2015 Sep; 9(9):9134-47. PubMed ID: 26266824 [TBL] [Abstract][Full Text] [Related]
8. Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. O'Neil A; Prevelige PE; Basu G; Douglas T Biomacromolecules; 2012 Dec; 13(12):3902-7. PubMed ID: 23121071 [TBL] [Abstract][Full Text] [Related]
9. Decoding bacteriophage P22 assembly: identification of two charged residues in scaffolding protein responsible for coat protein interaction. Cortines JR; Weigele PR; Gilcrease EB; Casjens SR; Teschke CM Virology; 2011 Dec; 421(1):1-11. PubMed ID: 21974803 [TBL] [Abstract][Full Text] [Related]
10. Domain study of bacteriophage p22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange. Kang S; Prevelige PE J Mol Biol; 2005 Apr; 347(5):935-48. PubMed ID: 15784254 [TBL] [Abstract][Full Text] [Related]
11. Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Jiang W; Li Z; Zhang Z; Baker ML; Prevelige PE; Chiu W Nat Struct Biol; 2003 Feb; 10(2):131-5. PubMed ID: 12536205 [TBL] [Abstract][Full Text] [Related]
12. Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching. Suhanovsky MM; Parent KN; Dunn SE; Baker TS; Teschke CM Mol Microbiol; 2010 Sep; 77(6):1568-82. PubMed ID: 20659287 [TBL] [Abstract][Full Text] [Related]
13. Bacteriophage P22 capsid size determination: roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus. Suhanovsky MM; Teschke CM Virology; 2011 Sep; 417(2):418-29. PubMed ID: 21784500 [TBL] [Abstract][Full Text] [Related]
14. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Parent KN; Khayat R; Tu LH; Suhanovsky MM; Cortines JR; Teschke CM; Johnson JE; Baker TS Structure; 2010 Mar; 18(3):390-401. PubMed ID: 20223221 [TBL] [Abstract][Full Text] [Related]
15. Modular interior loading and exterior decoration of a virus-like particle. Sharma J; Uchida M; Miettinen HM; Douglas T Nanoscale; 2017 Jul; 9(29):10420-10430. PubMed ID: 28702648 [TBL] [Abstract][Full Text] [Related]
16. Conformational changes in bacteriophage P22 scaffolding protein induced by interaction with coat protein. Padilla-Meier GP; Teschke CM J Mol Biol; 2011 Jul; 410(2):226-40. PubMed ID: 21605566 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of ordered nanostructures of sulfide nanocrystal assemblies over self-assembled genetically engineered P22 coat protein. Shen L; Bao N; Prevelige PE; Gupta A J Am Chem Soc; 2010 Dec; 132(49):17354-7. PubMed ID: 21090711 [TBL] [Abstract][Full Text] [Related]
18. Encapsulation of Active Enzymes within Bacteriophage P22 Virus-Like Particles. Patterson DP Methods Mol Biol; 2018; 1798():11-24. PubMed ID: 29868948 [TBL] [Abstract][Full Text] [Related]
19. Sortase-Mediated Ligation as a Modular Approach for the Covalent Attachment of Proteins to the Exterior of the Bacteriophage P22 Virus-like Particle. Patterson D; Schwarz B; Avera J; Western B; Hicks M; Krugler P; Terra M; Uchida M; McCoy K; Douglas T Bioconjug Chem; 2017 Aug; 28(8):2114-2124. PubMed ID: 28612603 [TBL] [Abstract][Full Text] [Related]
20. The energetic contributions of scaffolding and coat proteins to the assembly of bacteriophage procapsids. Zlotnick A; Suhanovsky MM; Teschke CM Virology; 2012 Jun; 428(1):64-9. PubMed ID: 22520942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]