BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 23957937)

  • 1. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness.
    Bao B; Azmi AS; Li Y; Ahmad A; Ali S; Banerjee S; Kong D; Sarkar FH
    Curr Stem Cell Res Ther; 2014 Jan; 9(1):22-35. PubMed ID: 23957937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness.
    Bao B; Azmi AS; Ali S; Ahmad A; Li Y; Banerjee S; Kong D; Sarkar FH
    Biochim Biophys Acta; 2012 Dec; 1826(2):272-96. PubMed ID: 22579961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting CSC-related miRNAs for cancer therapy by natural agents.
    Bao B; Li Y; Ahmad A; Azmi AS; Bao G; Ali S; Banerjee S; Kong D; Sarkar FH
    Curr Drug Targets; 2012 Dec; 13(14):1858-68. PubMed ID: 23140295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells.
    Bao B; Ahmad A; Li Y; Azmi AS; Ali S; Banerjee S; Kong D; Sarkar FH
    Expert Opin Ther Targets; 2012 Oct; 16(10):1041-54. PubMed ID: 22877147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition.
    Wang C; Shao L; Pan C; Ye J; Ding Z; Wu J; Du Q; Ren Y; Zhu C
    Stem Cell Res Ther; 2019 Jun; 10(1):175. PubMed ID: 31196164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione peroxidase 4 maintains a stemness phenotype, oxidative homeostasis and regulates biological processes in Panc‑1 cancer stem‑like cells.
    Peng G; Tang Z; Xiang Y; Chen W
    Oncol Rep; 2019 Feb; 41(2):1264-1274. PubMed ID: 30535490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer.
    Garg M
    Expert Opin Ther Targets; 2015 Feb; 19(2):285-97. PubMed ID: 25563894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism.
    Gammon L; Biddle A; Heywood HK; Johannessen AC; Mackenzie IC
    PLoS One; 2013; 8(4):e62493. PubMed ID: 23638097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor and its microenvironment: a synergistic interplay.
    Catalano V; Turdo A; Di Franco S; Dieli F; Todaro M; Stassi G
    Semin Cancer Biol; 2013 Dec; 23(6 Pt B):522-32. PubMed ID: 24012661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies.
    Khan AQ; Ahmed EI; Elareer NR; Junejo K; Steinhoff M; Uddin S
    Cells; 2019 Aug; 8(8):. PubMed ID: 31530793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling mechanism(s) of reactive oxygen species in Epithelial-Mesenchymal Transition reminiscent of cancer stem cells in tumor progression.
    Wang Z; Li Y; Sarkar FH
    Curr Stem Cell Res Ther; 2010 Mar; 5(1):74-80. PubMed ID: 19951255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folate deficient tumor microenvironment promotes epithelial-to-mesenchymal transition and cancer stem-like phenotypes.
    Su YH; Huang WC; Huang TH; Huang YJ; Sue YK; Huynh TT; Hsiao M; Liu TZ; Wu AT; Lin CM
    Oncotarget; 2016 May; 7(22):33246-56. PubMed ID: 27119349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of microRNAs in cancer.
    Lan J; Huang Z; Han J; Shao J; Huang C
    Cancer Lett; 2018 Apr; 418():250-259. PubMed ID: 29330105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multifaceted role of reactive oxygen species in tumorigenesis.
    Kirtonia A; Sethi G; Garg M
    Cell Mol Life Sci; 2020 Nov; 77(22):4459-4483. PubMed ID: 32358622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cell programs in cancer initiation, progression, and therapy resistance.
    Huang T; Song X; Xu D; Tiek D; Goenka A; Wu B; Sastry N; Hu B; Cheng SY
    Theranostics; 2020; 10(19):8721-8743. PubMed ID: 32754274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting redox regulation and autophagy systems in cancer stem cells.
    Khan SU; Rayees S; Sharma P; Malik F
    Clin Exp Med; 2023 Sep; 23(5):1405-1423. PubMed ID: 36473988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia Accelerates Aggressiveness of Hepatocellular Carcinoma Cells Involving Oxidative Stress, Epithelial-Mesenchymal Transition and Non-Canonical Hedgehog Signaling.
    Liu Z; Tu K; Wang Y; Yao B; Li Q; Wang L; Dou C; Liu Q; Zheng X
    Cell Physiol Biochem; 2017; 44(5):1856-1868. PubMed ID: 29237157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF.
    Bao B; Ahmad A; Kong D; Ali S; Azmi AS; Li Y; Banerjee S; Padhye S; Sarkar FH
    PLoS One; 2012; 7(8):e43726. PubMed ID: 22952749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant Mechanisms and ROS-Related MicroRNAs in Cancer Stem Cells.
    Dando I; Cordani M; Dalla Pozza E; Biondani G; Donadelli M; Palmieri M
    Oxid Med Cell Longev; 2015; 2015():425708. PubMed ID: 26064420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance.
    Wang Z; Li Y; Ahmad A; Azmi AS; Kong D; Banerjee S; Sarkar FH
    Drug Resist Updat; 2010; 13(4-5):109-18. PubMed ID: 20692200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.