These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 23958319)
1. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Valence Sd; Tille JC; Chaabane C; Gurny R; Bochaton-Piallat ML; Walpoth BH; Möller M Eur J Pharm Biopharm; 2013 Sep; 85(1):78-86. PubMed ID: 23958319 [TBL] [Abstract][Full Text] [Related]
2. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. Uebersax L; Apfel T; Nuss KM; Vogt R; Kim HY; Meinel L; Kaplan DL; Auer JA; Merkle HP; von Rechenberg B Eur J Pharm Biopharm; 2013 Sep; 85(1):107-18. PubMed ID: 23958322 [TBL] [Abstract][Full Text] [Related]
4. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Yang J; Motlagh D; Webb AR; Ameer GA Tissue Eng; 2005; 11(11-12):1876-86. PubMed ID: 16411834 [TBL] [Abstract][Full Text] [Related]
5. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction. Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860 [TBL] [Abstract][Full Text] [Related]
6. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798 [TBL] [Abstract][Full Text] [Related]
7. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961 [TBL] [Abstract][Full Text] [Related]
8. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs. Wen Y; Gallego MR; Nielsen LF; Jorgensen L; Møller EH; Nielsen HM Eur J Pharm Biopharm; 2013 Sep; 85(1):87-98. PubMed ID: 23958320 [TBL] [Abstract][Full Text] [Related]
9. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts. Park IS; Kim SH; Kim YH; Kim IH; Kim SH J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403 [TBL] [Abstract][Full Text] [Related]
10. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Wu HC; Wang TW; Kang PL; Tsuang YH; Sun JS; Lin FH Biomaterials; 2007 Mar; 28(7):1385-92. PubMed ID: 17141865 [TBL] [Abstract][Full Text] [Related]
11. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. de Valence S; Tille JC; Mugnai D; Mrowczynski W; Gurny R; Möller M; Walpoth BH Biomaterials; 2012 Jan; 33(1):38-47. PubMed ID: 21940044 [TBL] [Abstract][Full Text] [Related]
12. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
17. Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Mendelson K; Aikawa E; Mettler BA; Sales V; Martin D; Mayer JE; Schoen FJ Cardiovasc Pathol; 2007; 16(5):277-82. PubMed ID: 17868878 [TBL] [Abstract][Full Text] [Related]
18. The in vitro and in vivo biocompatibility evaluation of heparin-poly(ε-caprolactone) conjugate for vascular tissue engineering scaffolds. Ye L; Wu X; Duan HY; Geng X; Chen B; Gu YQ; Zhang AY; Zhang J; Feng ZG J Biomed Mater Res A; 2012 Dec; 100(12):3251-8. PubMed ID: 22733560 [TBL] [Abstract][Full Text] [Related]
19. Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. Zavan B; Vindigni V; Lepidi S; Iacopetti I; Avruscio G; Abatangelo G; Cortivo R FASEB J; 2008 Aug; 22(8):2853-61. PubMed ID: 18385214 [TBL] [Abstract][Full Text] [Related]
20. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Meretoja VV; Tirri T; Malin M; Seppälä JV; Närhi TO Clin Oral Implants Res; 2014 Feb; 25(2):159-64. PubMed ID: 23106633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]