These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23958933)

  • 1. Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures.
    Sahoo P; Liu Y; Makongo JP; Su XL; Kim SJ; Takas N; Chi H; Uher C; Pan X; Poudeu PF
    Nanoscale; 2013 Oct; 5(19):9419-27. PubMed ID: 23958933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors.
    Liu Y; Sahoo P; Makongo JP; Zhou X; Kim SJ; Chi H; Uher C; Pan X; Poudeu PF
    J Am Chem Soc; 2013 May; 135(20):7486-95. PubMed ID: 23607819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys.
    Makongo JP; Misra DK; Zhou X; Pant A; Shabetai MR; Su X; Uher C; Stokes KL; Poudeu PF
    J Am Chem Soc; 2011 Nov; 133(46):18843-52. PubMed ID: 21970624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and phonon transport in Sb-doped Ti(0.1)Zr(0.9)Ni(1+x)Sn(0.975)Sb(0.025) nanocomposites.
    Liu Y; Page A; Sahoo P; Chi H; Uher C; Poudeu PF
    Dalton Trans; 2014 Jun; 43(21):8094-101. PubMed ID: 24722627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of Zr-Ni-Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits.
    Do DT; Mahanti SD; Pulikkoti JJ
    J Phys Condens Matter; 2014 Jul; 26(27):275501. PubMed ID: 24925669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.
    Chung I; Song JH; Im J; Androulakis J; Malliakas CD; Li H; Freeman AJ; Kenney JT; Kanatzidis MG
    J Am Chem Soc; 2012 May; 134(20):8579-87. PubMed ID: 22578072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Panoscopically optimized thermoelectric performance of a half-Heusler/full-Heusler based in situ bulk composite Zr(0.7)Hf(0.3)Ni(1+x)Sn: an energy and time efficient way.
    Bhardwaj A; Chauhan NS; Sancheti B; Pandey GN; Senguttuvan TD; Misra DK
    Phys Chem Chem Phys; 2015 Nov; 17(44):30090-101. PubMed ID: 26499748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compositional Tailoring for Realizing High Thermoelectric Performance in Hafnium-Free n-Type ZrNiSn Half-Heusler Alloys.
    Chauhan NS; Bathula S; Gahtori B; Mahanti SD; Bhattacharya A; Vishwakarma A; Bhardwaj R; Singh VN; Dhar A
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47830-47836. PubMed ID: 31441632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.
    Wang J; Gong M; Guo GC; He L
    J Phys Condens Matter; 2012 Nov; 24(47):475302. PubMed ID: 23103408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited-state relaxation in PbSe quantum dots.
    An JM; Califano M; Franceschetti A; Zunger A
    J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot.
    Jarillo-Herrero P; Sapmaz S; Dekker C; Kouwenhoven LP; Van Der Zant HS
    Nature; 2004 May; 429(6990):389-92. PubMed ID: 15164056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of high thermoelectric performance of FeNb1-xZr/HfxSb1-ySny alloys: A first-principles study.
    Zhang X; Wang Y; Yan Y; Wang C; Zhang G; Cheng Z; Ren F; Deng H; Zhang J
    Sci Rep; 2016 Sep; 6():33120. PubMed ID: 27604826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-chemical analysis of the nonstoichiometry, conductivity and thermopower of La(2)NiO(4+delta).
    Kim HS; Yoo HI
    Phys Chem Chem Phys; 2010 May; 12(18):4704-13. PubMed ID: 20428550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic transport in n- and p-type modulation doped Ga(x)In(1-x)N(y)As(1-y)/ GaAs quantum wells.
    Sun Y; Balkan N; Aslan M; Lisesivdin SB; Carrere H; Arikan MC; Marie X
    J Phys Condens Matter; 2009 Apr; 21(17):174210. PubMed ID: 21825414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep level transient spectroscopy of hole traps related to CdTe self-assembled quantum dots embedded in ZnTe matrix.
    Zielony E; Placzek-Popko E; Dyba P; Gumienny Z; Szatkowski J; Dobaczewski L; Karczewski G
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6830-6. PubMed ID: 22103087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valence band mixing of cubic GaN/AlN quantum dots.
    Segarra C; Climente JI; Planelles J
    J Phys Condens Matter; 2012 Mar; 24(11):115801. PubMed ID: 22353784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.