These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23958940)

  • 1. Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation.
    Dey D; Bhattacharya T; Majumdar B; Mandani S; Sharma B; Sarma TK
    Dalton Trans; 2013 Oct; 42(38):13821-5. PubMed ID: 23958940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of palladium in mesoporous silica matrix: preparation, characterization, and its catalytic efficacy in carbon-carbon coupling reactions.
    Jana S; Dutta B; Bera R; Koner S
    Inorg Chem; 2008 Jun; 47(12):5512-20. PubMed ID: 18459724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium catalysts supported on mesoporous molecular sieves bearing nitrogen donor groups: preparation and use in Heck and Suzuki C-C bond-forming reactions.
    Demel J; Lamac M; Cejka J; Stepnicka P
    ChemSusChem; 2009; 2(5):442-51. PubMed ID: 19418499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications.
    Yoon B; Wai CM
    J Am Chem Soc; 2005 Dec; 127(49):17174-5. PubMed ID: 16332051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view.
    Astruc D
    Inorg Chem; 2007 Mar; 46(6):1884-94. PubMed ID: 17348719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in polymeric palladium catalysts for organic synthesis.
    Uozumi Y
    Top Curr Chem; 2004; 242():77-112. PubMed ID: 23900911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Synthesis of Palladium Catalyst on Supporting WS2 Nanotubes and its Reactivity in Cross-Coupling Reactions.
    Višić B; Cohen H; Popovitz-Biro R; Tenne R; Sokolov VI; Abramova NV; Buyanovskaya AG; Dzvonkovskii SL; Lependina OL
    Chem Asian J; 2015 Oct; 10(10):2234-9. PubMed ID: 26097214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected activation of carbon-bromide bond promoted by palladium nanoparticles in Suzuki C-C couplings.
    Sanhes D; Raluy E; Rétory S; Saffon N; Teuma E; Gómez M
    Dalton Trans; 2010 Oct; 39(40):9719-26. PubMed ID: 20820601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in noble metal nanocatalysts for Suzuki and Heck cross-coupling reactions.
    Narayanan R
    Molecules; 2010 Mar; 15(4):2124-38. PubMed ID: 20428032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C-C coupling chemistry.
    Guerra J; Herrero MA
    Nanoscale; 2010 Aug; 2(8):1390-400. PubMed ID: 20820722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium nanoparticles embedded in the inner surfaces of carbon nanotubes: synthesis, catalytic activity, and sinter resistance.
    Liu H; Zhang L; Wang N; Su DS
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12634-8. PubMed ID: 25155839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium-ligated palladium(II) complexes as highly active catalysts for carbon-carbon coupling reactions: the Heck reaction.
    Yao Q; Kinney EP; Zheng C
    Org Lett; 2004 Aug; 6(17):2997-9. PubMed ID: 15330667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction.
    Scheuermann GM; Rumi L; Steurer P; Bannwarth W; Mülhaupt R
    J Am Chem Soc; 2009 Jun; 131(23):8262-70. PubMed ID: 19469566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polyphenylene support for Pd catalysts with exceptional catalytic activity.
    Wang F; Mielby J; Richter FH; Wang G; Prieto G; Kasama T; Weidenthaler C; Bongard HJ; Kegnæs S; Fürstner A; Schüth F
    Angew Chem Int Ed Engl; 2014 Aug; 53(33):8645-8. PubMed ID: 25044615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pincer-type Heck catalysts and mechanisms based on Pd(IV) intermediates: a computational study.
    Blacque O; Frech CM
    Chemistry; 2010 Feb; 16(5):1521-31. PubMed ID: 20024984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion- and atom-leaching mechanisms from palladium nanoparticles in cross-coupling reactions.
    Gaikwad AV; Holuigue A; Thathagar MB; ten Elshof JE; Rothenberg G
    Chemistry; 2007; 13(24):6908-13. PubMed ID: 17539029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly active palladium/activated carbon catalysts for Heck reactions: correlation of activity, catalyst properties, and Pd leaching.
    Köhler K; Heidenreich RG; Krauter JG; Pietsch J
    Chemistry; 2002 Feb; 8(3):622-31. PubMed ID: 11859857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction.
    Wu Y; Wang D; Zhao P; Niu Z; Peng Q; Li Y
    Inorg Chem; 2011 Mar; 50(6):2046-8. PubMed ID: 21268607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxime-derived palladacycles as source of palladium nanoparticles.
    Alonso DA; Nájera C
    Chem Soc Rev; 2010 Aug; 39(8):2891-902. PubMed ID: 20544118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.