BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23959009)

  • 1. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).
    Ntuli TM; Pammenter NW; Berjak P
    Biol Res; 2013; 46(2):121-30. PubMed ID: 23959009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased rate of drying reduces metabolic inequity and critical water content in radicles of Cicer arietinum L.
    Chandra J; Tandon M; Keshavkant S
    Physiol Mol Biol Plants; 2015 Apr; 21(2):215-23. PubMed ID: 25931777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) seeds.
    Ntuli TM; Finch-Savage WE; Berjak P; Pammenter NW
    J Integr Plant Biol; 2011 Apr; 53(4):270-80. PubMed ID: 21205182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds.
    Buitink J; Leprince O; Hoekstra FA
    Plant Physiol; 2000 Nov; 124(3):1413-26. PubMed ID: 11080316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing desiccation tolerance of pea embryo protoplasts during germination.
    Koster KL; Reisdorph N; Ramsay JL
    J Exp Bot; 2003 Jun; 54(387):1607-14. PubMed ID: 12730264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desiccation tolerance of protoplasts isolated from pea embryos.
    Xiao L; Koster KL
    J Exp Bot; 2001 Nov; 52(364):2105-14. PubMed ID: 11604449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of recovery of mitochondrial structure and function in desiccation tolerance of pea seeds.
    Wang WQ; Cheng HY; Møller IM; Song SQ
    Physiol Plant; 2012 Jan; 144(1):20-34. PubMed ID: 21910735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds.
    Wojtyla Ł; Garnczarska M; Zalewski T; Bednarski W; Ratajczak L; Jurga S
    J Plant Physiol; 2006 Dec; 163(12):1207-20. PubMed ID: 16904793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles.
    Leprince O; Harren FJ; Buitink J; Alberda M; Hoekstra FA
    Plant Physiol; 2000 Feb; 122(2):597-608. PubMed ID: 10677452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-tolerance of zygotic embryos from recalcitrant seeds in relation to oxidative stress--a case study on two amaryllid species.
    Sershen ; Varghese B; Pammenter NW; Berjak P
    J Plant Physiol; 2012 Jul; 169(10):999-1011. PubMed ID: 22591858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance.
    Wang WQ; Møller IM; Song SQ
    J Proteomics; 2012 Dec; 77():68-86. PubMed ID: 22796356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential drying rates of recalcitrant Trichilia dregeana embryonic axes: a study of survival and oxidative stress metabolism.
    Varghese B; Sershen ; Berjak P; Varghese D; Pammenter NW
    Physiol Plant; 2011 Aug; 142(4):326-38. PubMed ID: 21401616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic Analysis of Desiccation Tolerance and Its Re-Establishment in Different Embryo Axis Tissues of Germinated Pea Seeds.
    Wang WQ; Wang Y; Song XJ; Zhang Q; Cheng HY; Liu J; Song SQ
    J Proteome Res; 2021 May; 20(5):2352-2363. PubMed ID: 33739120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar effects on membrane damage during desiccation of pea embryo protoplasts.
    Halperin SJ; Koster KL
    J Exp Bot; 2006; 57(10):2303-11. PubMed ID: 16798844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of plant stress biomarkers in assessing the effects of desiccation in zygotic embryos from recalcitrant seeds: challenges and considerations.
    Sershen ; Varghese B; Naidoo C; Pammenter NW
    Plant Biol (Stuttg); 2016 May; 18(3):433-44. PubMed ID: 26725332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.
    Huang H; Song S
    Plant Physiol Biochem; 2013 Jul; 68():61-70. PubMed ID: 23628926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses to desiccation injury in developing wheat embryos from naturally- and artificially-dried grains.
    Spanò C; Bottega S; Grilli I; Lorenzi R
    Plant Physiol Biochem; 2011 Apr; 49(4):363-7. PubMed ID: 21356595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.)].
    Mihoub A; Chaoui A; El Ferjani E
    C R Biol; 2005 Jan; 328(1):33-41. PubMed ID: 15714878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.
    Roach T; Kranner I
    J Plant Physiol; 2011 Oct; 168(15):1870-3. PubMed ID: 21752488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water content, adenylate kinase, and mitochondria drive adenylate balance in dehydrating and imbibing seeds.
    Raveneau MP; Benamar A; Macherel D
    J Exp Bot; 2017 Jun; 68(13):3501-3512. PubMed ID: 28859379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.