BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23959174)

  • 1. Ribophorin II regulates breast tumor initiation and metastasis through the functional suppression of GSK3β.
    Takahashi RU; Takeshita F; Honma K; Ono M; Kato K; Ochiya T
    Sci Rep; 2013; 3():2474. PubMed ID: 23959174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedimetric detection of mutant p53 biomarker-driven metastatic breast cancers under hyposmotic pressure.
    Shi M; Shtraizent N; Polotskaia A; Bargonetti J; Matsui H
    PLoS One; 2014; 9(6):e99351. PubMed ID: 24937470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression and clinical significance of ribophorin II (RPN2) in human breast cancer.
    Ono M; Tsuda H; Kobayashi T; Takeshita F; Takahashi RU; Tamura K; Akashi-Tanaka S; Moriya T; Yamasaki T; Kinoshita T; Yamamoto J; Fujiwara Y; Ochiya T
    Pathol Int; 2015 Jun; 65(6):301-8. PubMed ID: 25881688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4.
    Polotskaia A; Xiao G; Reynoso K; Martin C; Qiu WG; Hendrickson RC; Bargonetti J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1220-9. PubMed ID: 25733866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways.
    Yan D; Avtanski D; Saxena NK; Sharma D
    J Biol Chem; 2012 Mar; 287(11):8598-612. PubMed ID: 22270359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gain-of-Function Mutant p53 R273H Interacts with Replicating DNA and PARP1 in Breast Cancer.
    Xiao G; Lundine D; Annor GK; Canar J; Ellison V; Polotskaia A; Donabedian PL; Reiner T; Khramtsova GF; Olopade OI; Mazo A; Bargonetti J
    Cancer Res; 2020 Feb; 80(3):394-405. PubMed ID: 31776133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ.
    Escoll M; Gargini R; Cuadrado A; Anton IM; Wandosell F
    Oncogene; 2017 Jun; 36(25):3515-3527. PubMed ID: 28166194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities.
    Kollareddy M; Dimitrova E; Vallabhaneni KC; Chan A; Le T; Chauhan KM; Carrero ZI; Ramakrishnan G; Watabe K; Haupt Y; Haupt S; Pochampally R; Boss GR; Romero DG; Radu CG; Martinez LA
    Nat Commun; 2015 Jun; 6():7389. PubMed ID: 26067754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells.
    Ghosh JC; Altieri DC
    Clin Cancer Res; 2005 Jun; 11(12):4580-8. PubMed ID: 15958644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient.
    Shtraizent N; Matsui H; Polotskaia A; Bargonetti J
    Int J Environ Res Public Health; 2015 Dec; 13(1):ijerph13010022. PubMed ID: 26703669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PRIMA-1 inhibits growth of breast cancer cells by re-activating mutant p53 protein.
    Liang Y; Besch-Williford C; Hyder SM
    Int J Oncol; 2009 Nov; 35(5):1015-23. PubMed ID: 19787255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WTp53 induction does not override MTp53 chemoresistance and radioresistance due to gain-of-function in lung cancer cells.
    Cuddihy AR; Jalali F; Coackley C; Bristow RG
    Mol Cancer Ther; 2008 Apr; 7(4):980-92. PubMed ID: 18413811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3β to downregulate β-catenin transcription target, osteopontin.
    Mitra A; Menezes ME; Pannell LK; Mulekar MS; Honkanen RE; Shevde LA; Samant RS
    Oncogene; 2012 Oct; 31(41):4472-83. PubMed ID: 22266849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors.
    Mora-Santos M; Limón-Mortés MC; Giráldez S; Herrero-Ruiz J; Sáez C; Japón MÁ; Tortolero M; Romero F
    J Biol Chem; 2011 Aug; 286(34):30047-56. PubMed ID: 21757741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells.
    Mottet D; Dumont V; Deccache Y; Demazy C; Ninane N; Raes M; Michiels C
    J Biol Chem; 2003 Aug; 278(33):31277-85. PubMed ID: 12764143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression analysis of E-cadherin, Slug and GSK3beta in invasive ductal carcinoma of breast.
    Prasad CP; Rath G; Mathur S; Bhatnagar D; Parshad R; Ralhan R
    BMC Cancer; 2009 Sep; 9():325. PubMed ID: 19751508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nir1 promotes invasion of breast cancer cells by binding to chemokine (C-C motif) ligand 18 through the PI3K/Akt/GSK3β/Snail signalling pathway.
    Zhang B; Yin C; Li H; Shi L; Liu N; Sun Y; Lu S; Liu Y; Sun L; Li X; Chen W; Qi Y
    Eur J Cancer; 2013 Dec; 49(18):3900-13. PubMed ID: 24001613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer.
    Guo BH; Feng Y; Zhang R; Xu LH; Li MZ; Kung HF; Song LB; Zeng MS
    Mol Cancer; 2011 Jan; 10(1):10. PubMed ID: 21276221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3beta activity in human breast cancer cells.
    Soto-Cerrato V; Viñals F; Lambert JR; Kelly JA; Pérez-Tomás R
    Mol Cancer Ther; 2007 Jan; 6(1):362-9. PubMed ID: 17237295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPK inhibits MTDH expression via GSK3β and SIRT1 activation: potential role in triple negative breast cancer cell proliferation.
    Gollavilli PN; Kanugula AK; Koyyada R; Karnewar S; Neeli PK; Kotamraju S
    FEBS J; 2015 Oct; 282(20):3971-85. PubMed ID: 26236947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.