BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23959217)

  • 61. The greenhouse gas and energy balance of different treatment concepts for bio-waste.
    Ortner ME; Müller W; Bockreis A
    Waste Manag Res; 2013 Oct; 31(10 Suppl):46-55. PubMed ID: 24008328
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes.
    Salomoni C; Caputo A; Bonoli M; Francioso O; Rodriguez-Estrada MT; Palenzona D
    Bioresour Technol; 2011 Jun; 102(11):6443-8. PubMed ID: 21498069
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.
    Pérez-Elvira SI; Fdz-Polanco F
    Water Sci Technol; 2012; 65(10):1839-46. PubMed ID: 22546800
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Greenhouse gas emissions from home composting of organic household waste.
    Andersen JK; Boldrin A; Christensen TH; Scheutz C
    Waste Manag; 2010 Dec; 30(12):2475-82. PubMed ID: 20674324
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Can a wastewater treatment plant be a powerplant? A case study.
    Schwarzenbeck N; Pfeiffer W; Bomball E
    Water Sci Technol; 2008; 57(10):1555-61. PubMed ID: 18520012
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Greenhouse gases emissions and energy use of wheat grain-based bioethanol fuel blends.
    Scacchi CC; González-García S; Caserini S; Rigamonti L
    Sci Total Environ; 2010 Oct; 408(21):5010-8. PubMed ID: 20692687
    [TBL] [Abstract][Full Text] [Related]  

  • 67. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
    Rehl T; Müller J
    J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants - case studies from northern Poland.
    Maktabifard M; Zaborowska E; Makinia J
    Water Sci Technol; 2019 Jun; 79(11):2211-2220. PubMed ID: 31318359
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration.
    Abella JP; Bergerson JA
    Environ Sci Technol; 2012 Dec; 46(24):13037-47. PubMed ID: 23013493
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A multi-objective programming model for assessment the GHG emissions in MSW management.
    Mavrotas G; Skoulaxinou S; Gakis N; Katsouros V; Georgopoulou E
    Waste Manag; 2013 Sep; 33(9):1934-49. PubMed ID: 23751513
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities.
    Zhao G; Garrido-Baserba M; Reifsnyder S; Xu JC; Rosso D
    Sci Total Environ; 2019 May; 665():762-773. PubMed ID: 30790749
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Emissions credits: opportunity to promote integrated nitrogen management in the wastewater sector.
    Wang JS; Hamburg SP; Pryor DE; Chandran K; Daigger GT
    Environ Sci Technol; 2011 Aug; 45(15):6239-46. PubMed ID: 21744808
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications.
    Cao Y; Pawłowski A
    Bioresour Technol; 2013 Jan; 127():81-91. PubMed ID: 23131626
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Carbon balance of anaerobic granulation process: carbon credit.
    Wong BT; Show KY; Lee DJ; Lai JY
    Bioresour Technol; 2009 Mar; 100(5):1734-9. PubMed ID: 18990565
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of different conditions, substrates and operation modes by dynamic simulation of a full-scale anaerobic SBR plant.
    Rönner-Holm SG; Zak A; Holm NC
    Water Sci Technol; 2012; 65(3):558-66. PubMed ID: 22258689
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Greenhouse gas emissions in sludge ultrasonication followed by anaerobic digestion processes.
    Sridhar P; Tyagi RD; Bhunia P; Rout PR; Zhang TC; Surampalli RY
    Bioresour Technol; 2021 Dec; 341():125754. PubMed ID: 34411943
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optimal design activated sludge process by means of multi-objective optimization: case study in Benchmark Simulation Model 1 (BSM1).
    Chen W; Yao C; Lu X
    Water Sci Technol; 2014; 69(10):2052-8. PubMed ID: 24845320
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Estimation of greenhouse gas emissions by the wastewater treatment plant of a locomotive repair factory in China.
    Wei Y; Yerushalmi L; Haghighat F
    Water Environ Res; 2008 Dec; 80(12):2253-60. PubMed ID: 19146103
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.
    Santín I; Barbu M; Pedret C; Vilanova R
    ISA Trans; 2018 Jun; 77():146-166. PubMed ID: 29703628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.