These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23959237)

  • 1. Assessing temporal stability for coarse scale satellite moisture validation in the Maqu area, Tibet.
    Bhatti HA; Rientjes T; Verhoef W; Yaseen M
    Sensors (Basel); 2013 Aug; 13(8):10725-48. PubMed ID: 23959237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evaluation of AMSR-E soil moisture data in atmospheric modeling using a suitable time series iteration to derive land surface fluxes over the Tibetan Plateau.
    Ma W; Ma Y
    PLoS One; 2019; 14(12):e0226373. PubMed ID: 31841539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ELBARA II, an L-band radiometer system for soil moisture research.
    Schwank M; Wiesmann A; Werner C; Mätzler C; Weber D; Murk A; Völksch I; Wegmüller U
    Sensors (Basel); 2010; 10(1):584-612. PubMed ID: 22315556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downscaling satellite soil moisture using geomorphometry and machine learning.
    Guevara M; Vargas R
    PLoS One; 2019; 14(9):e0219639. PubMed ID: 31550248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of large scale spatial variability of soil moisture using a geostatistical method.
    Lakhankar T; Jones AS; Combs CL; Sengupta M; Vonder Haar TH; Khanbilvardi R
    Sensors (Basel); 2010; 10(1):913-32. PubMed ID: 22315576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remotely sensed soil moisture to estimate savannah NDVI.
    Boke-Olén N; Ardö J; Eklundh L; Holst T; Lehsten V
    PLoS One; 2018; 13(7):e0200328. PubMed ID: 29995901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015.
    Cui Y; Zeng C; Zhou J; Xie H; Wan W; Hu L; Xiong W; Chen X; Fan W; Hong Y
    Sci Data; 2019 Oct; 6(1):247. PubMed ID: 31672975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of SMOS soil moisture products over the Maqu and Twente regions.
    Dente L; Su Z; Wen J
    Sensors (Basel); 2012; 12(8):9965-86. PubMed ID: 23112582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-Temporal Mapping of L-Band Microwave Emission on a Heterogeneous Area with ELBARA III Passive Radiometer.
    Gluba Ł; Łukowski M; Szlązak R; Sagan J; Szewczak K; Łoś H; Rafalska-Przysucha A; Usowicz B
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31394738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements.
    Zhu L; Wang H; Tong C; Liu W; Du B
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR).
    Wagner W; Pathe C; Doubkova M; Sabel D; Bartsch A; Hasenauer S; Blöschl G; Scipal K; Martínez-Fernández J; Löw A
    Sensors (Basel); 2008 Feb; 8(2):1174-1197. PubMed ID: 27879759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodology to identify representative configurations of sensors for monitoring soil moisture.
    Rivera D; Granda S; Arumí JL; Sandoval M; Billib M
    Environ Monit Assess; 2012 Nov; 184(11):6563-74. PubMed ID: 22146817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global soil moisture data derived through machine learning trained with in-situ measurements.
    O S; Orth R
    Sci Data; 2021 Jul; 8(1):170. PubMed ID: 34253737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of multi-mission satellite data assimilation for studying water storage changes over South America.
    Khaki M; Awange J
    Sci Total Environ; 2019 Jan; 647():1557-1572. PubMed ID: 30180360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downscaling and validating SMAP soil moisture using a machine learning algorithm over the Awash River basin, Ethiopia.
    Sishah S; Abrahem T; Azene G; Dessalew A; Hundera H
    PLoS One; 2023; 18(1):e0279895. PubMed ID: 36638093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward High-Resolution Soil Moisture Monitoring by Combining Active-Passive Microwave and Optical Vegetation Remote Sensing Products with Land Surface Model.
    Toride K; Sawada Y; Aida K; Koike T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31514458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].
    Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and LANDSAT TM/ETM+ satellite images.
    Zawadzki J; Przeździecki K; Miatkowski Z
    J Environ Manage; 2016 Jan; 166():605-14. PubMed ID: 26610610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SMOS-Derived Soil Water EXtent and equivalent layer thickness facilitate determination of soil water resources.
    Usowicz B; Lukowski M; Lipiec J
    Sci Rep; 2020 Oct; 10(1):18330. PubMed ID: 33110156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Non-Hydrostatic Numerical Dust Model by Integrating Soil Moisture and Greenness Vegetation Fraction Data with Different Spatiotemporal Resolutions.
    Yu M; Yang C
    PLoS One; 2016; 11(12):e0165616. PubMed ID: 27936136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.