These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 23959242)
1. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Muñoz-Huerta RF; Guevara-Gonzalez RG; Contreras-Medina LM; Torres-Pacheco I; Prado-Olivarez J; Ocampo-Velazquez RV Sensors (Basel); 2013 Aug; 13(8):10823-43. PubMed ID: 23959242 [TBL] [Abstract][Full Text] [Related]
2. Application of a Combined Transmittance/Fluorescence Leaf Clip Sensor for the Nondestructive Determination of Nitrogen Status in White Cabbage Plants. Kaniszewski S; Kowalski A; Dysko J; Agati G Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445510 [TBL] [Abstract][Full Text] [Related]
3. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy. Ulissi V; Antonucci F; Benincasa P; Farneselli M; Tosti G; Guiducci M; Tei F; Costa C; Pallottino F; Pari L; Menesatti P Sensors (Basel); 2011; 11(6):6411-24. PubMed ID: 22163962 [TBL] [Abstract][Full Text] [Related]
5. [Research advance in nitrogen metabolism of plant and its environmental regulation]. Xu Z; Zhou G Ying Yong Sheng Tai Xue Bao; 2004 Mar; 15(3):511-6. PubMed ID: 15228008 [TBL] [Abstract][Full Text] [Related]
6. Applications of high-throughput plant phenotyping to study nutrient use efficiency. Berger B; de Regt B; Tester M Methods Mol Biol; 2013; 953():277-90. PubMed ID: 23073890 [TBL] [Abstract][Full Text] [Related]
7. A Leaf-Patchable Reflectance Meter for In Situ Continuous Monitoring of Chlorophyll Content. Zhang K; Li W; Li H; Luo Y; Li Z; Wang X; Chen X Adv Sci (Weinh); 2023 Dec; 10(35):e2305552. PubMed ID: 37797172 [TBL] [Abstract][Full Text] [Related]
8. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands. Iversen CM; Bridgham SD; Kellogg LE Ecology; 2010 Mar; 91(3):693-707. PubMed ID: 20426329 [TBL] [Abstract][Full Text] [Related]
9. Evaluating nitrogen removal by vegetation uptake using satellite image time series in riparian catchments. Wang X; Wang Q; Yang S; Zheng D; Wu C; Mannaerts CM Sci Total Environ; 2011 Jun; 409(13):2567-76. PubMed ID: 21496878 [TBL] [Abstract][Full Text] [Related]
10. Using Hand-Held Chlorophyll Meters and Canopy Reflectance Sensors for Fertilizer Nitrogen Management in Cereals in Small Farms in Developing Countries. Bijay-Singh ; Ali AM Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32092989 [TBL] [Abstract][Full Text] [Related]
11. Characterization of nitrogen and water status in oat leaves using optical sensing approach. Zhao B; Ma BL; Hu Y; Liu J J Sci Food Agric; 2015 Jan; 95(2):367-78. PubMed ID: 24796652 [TBL] [Abstract][Full Text] [Related]
12. Methods for Estimation of Nitrogen Components in Plants and Microorganisms. Singh P; Singh RK; Song QQ; Li HB; Yang LT; Li YR Methods Mol Biol; 2020; 2057():103-112. PubMed ID: 31595474 [TBL] [Abstract][Full Text] [Related]
13. Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage (Brassica oleracea L. var. capitata subvar. alba) Grown under Different Nitrogen Regimens. Agati G; Tuccio L; Kusznierewicz B; Chmiel T; Bartoszek A; Kowalski A; Grzegorzewska M; Kosson R; Kaniszewski S J Agric Food Chem; 2016 Jan; 64(1):85-94. PubMed ID: 26679081 [TBL] [Abstract][Full Text] [Related]
14. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Nunes-Nesi A; Fernie AR; Stitt M Mol Plant; 2010 Nov; 3(6):973-96. PubMed ID: 20926550 [TBL] [Abstract][Full Text] [Related]
15. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Nath M; Tuteja N Protoplasma; 2016 May; 253(3):767-786. PubMed ID: 26085375 [TBL] [Abstract][Full Text] [Related]
16. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. Cerovic ZG; Ghozlen NB; Milhade C; Obert M; Debuisson S; Le Moigne M J Agric Food Chem; 2015 Apr; 63(14):3669-80. PubMed ID: 25801210 [TBL] [Abstract][Full Text] [Related]
17. Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality. Pandey AK; Ghosh A; Agrawal M; Agrawal SB Ecotoxicol Environ Saf; 2018 Aug; 158():59-68. PubMed ID: 29656165 [TBL] [Abstract][Full Text] [Related]
18. Effects of nitrogen and phosphorus addition on growth and leaf nitrogen metabolism of alfalfa in alkaline soil in Yinchuan Plain of Hetao Basin. Xudong G; Fengju Z; Teng W; Xiaowei X; Xiaohui J; Xing X PeerJ; 2022; 10():e13261. PubMed ID: 35437473 [TBL] [Abstract][Full Text] [Related]
19. Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation. Patel M; Rangani J; Kumari A; Parida AK J Biotechnol; 2020 Nov; 323():136-158. PubMed ID: 32827603 [TBL] [Abstract][Full Text] [Related]
20. Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies. Weih M; Rönnberg-Wästjung AC Tree Physiol; 2007 Nov; 27(11):1551-9. PubMed ID: 17669744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]