BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23959681)

  • 1. The role of myogenic mechanisms in human cerebrovascular regulation.
    Tan CO; Hamner JW; Taylor JA
    J Physiol; 2013 Oct; 591(20):5095-105. PubMed ID: 23959681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing cerebral autoregulation via oscillatory lower body negative pressure and projection pursuit regression.
    Taylor JA; Tan CO; Hamner JW
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting human cerebral blood flow responses to augmented blood pressure oscillations.
    Hamner JW; Ishibashi K; Tan CO
    J Physiol; 2019 Mar; 597(6):1553-1564. PubMed ID: 30633356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of nicardipine on dynamic cerebral autoregulation in patients anesthetized with propofol and fentanyl.
    Endoh H; Honda T; Komura N; Shibue C; Watanabe I; Shimoji K
    Anesth Analg; 2000 Sep; 91(3):642-6. PubMed ID: 10960392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation.
    Hamner JW; Tan CO
    Stroke; 2014 Jun; 45(6):1771-7. PubMed ID: 24723314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure.
    Brothers RM; Zhang R; Wingo JE; Hubing KA; Crandall CG
    J Appl Physiol (1985); 2009 Dec; 107(6):1722-9. PubMed ID: 19797691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca²⁺ channel blockade.
    Tzeng YC; Chan GS; Willie CK; Ainslie PN
    J Physiol; 2011 Jul; 589(Pt 13):3263-74. PubMed ID: 21540346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations.
    Hamner JW; Cohen MA; Mukai S; Lipsitz LA; Taylor JA
    J Physiol; 2004 Sep; 559(Pt 3):965-73. PubMed ID: 15254153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the characteristic relationship between arterial pressure and cerebral flow.
    Tan CO
    J Appl Physiol (1985); 2012 Oct; 113(8):1194-200. PubMed ID: 22961266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.
    Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM
    Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of calcium channel blockers on cerebral oxygenation during tracheal extubation.
    Morimoto Y; Kemmotsu O; Gando S; Shibano T; Shikama H
    Anesth Analg; 2000 Aug; 91(2):347-52. PubMed ID: 10910846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers.
    Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of nicardipine-, nitroglycerin-, and prostaglandin E(1)-induced hypotension on cerebral pressure autoregulation in adult patients during propofol-fentanyl anesthesia.
    Endoh H; Honda T; Ohashi S; Hida S; Shibue C; Komura N
    Anesth Analg; 2002 Jan; 94(1):169-73, table of contents. PubMed ID: 11772822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cerebovasculature: a smooth (muscle) operator?
    Low DA
    J Physiol; 2013 Oct; 591(20):4959-60. PubMed ID: 24130321
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of nicardipine-, nitroglycerin-, and prostaglandin E1-induced hypotension on human cerebrovascular carbon dioxide reactivity during propofol-fentanyl anesthesia.
    Endoh H; Honda T; Komura N; Shibue C; Watanabe I; Shimoji K
    J Clin Anesth; 1999 Nov; 11(7):545-9. PubMed ID: 10624637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of calcium antagonists, felodipine and nicardipine, on cerebral circulation in dogs.
    Tanaka M; Yoshida Y; Mitomi A; Nakazawa M; Imai S
    Jpn J Pharmacol; 1990 Feb; 52(2):273-9. PubMed ID: 2313936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress.
    Brown CM; Dütsch M; Ohring S; Neundörfer B; Hilz MJ
    Eur J Appl Physiol; 2004 Mar; 91(2-3):279-86. PubMed ID: 14574578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contributions of systemic hemodynamic variables to cerebral autoregulation during orthostatic stress.
    Yoshida H; Hamner JW; Ishibashi K; Tan CO
    J Appl Physiol (1985); 2018 Feb; 124(2):321-329. PubMed ID: 29025902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Linear Characterisation of Cerebral Pressure-Flow Dynamics in Humans.
    Saleem S; Teal PD; Kleijn WB; O'Donnell T; Witter T; Tzeng YC
    PLoS One; 2015; 10(9):e0139470. PubMed ID: 26421429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nifedipine and nicardipine on regional cerebral blood flow distribution in patients with arterial hypertension.
    Akopov SE; Simonian NA; Kazarian AV
    Methods Find Exp Clin Pharmacol; 1996 Dec; 18(10):685-92. PubMed ID: 9121225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.