These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 23959726)

  • 1. Inactivation of mechano-sensitive dilatation upon repetitive mechanical stimulation of the musculo-vascular network in the rabbit.
    Turturici M; Roatta S
    J Physiol Pharmacol; 2013 Jun; 64(3):299-308. PubMed ID: 23959726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compression-induced hyperaemia in the rabbit masseter muscle: a model to investigate vascular mechano-sensitivity of skeletal muscle.
    Turturici M; Roatta S
    Physiol Meas; 2013 Mar; 34(3):307-14. PubMed ID: 23399827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of gadolinium chloride on basal flow and compression-induced rapid hyperemia in the rabbit masseter muscle.
    Turturici M; Roatta S
    J Physiol Pharmacol; 2014 Jun; 65(3):409-15. PubMed ID: 24930513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that the contraction-induced rapid hyperemia in rabbit masseter muscle is based on a mechanosensitive mechanism, not shared by cutaneous vascular beds.
    Turturici M; Mohammed M; Roatta S
    J Appl Physiol (1985); 2012 Aug; 113(4):524-31. PubMed ID: 22678964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetitive muscle compression reduces vascular mechano-sensitivity and the hyperemic response to muscle contraction.
    Messere A; Turturici M; Millo G; Roatta S
    J Physiol Pharmacol; 2017 Jun; 68(3):427-437. PubMed ID: 28820399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyper-Oxygenation Attenuates the Rapid Vasodilatory Response to Muscle Contraction and Compression.
    Messere A; Tschakovsky M; Seddone S; Lulli G; Franco W; Maffiodo D; Ferraresi C; Roatta S
    Front Physiol; 2018; 9():1078. PubMed ID: 30158874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional differences in blood flow variation in rat masseter muscle.
    Niioka T; Ishii H; Izumi H
    Arch Oral Biol; 2009 Nov; 54(11):1022-8. PubMed ID: 19762007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for investigating the control of muscle blood flow: the masseteric artery in conscious rabbits.
    Roatta S; Mohammed M; Turturici M; Milano L; Passatore M
    Physiol Meas; 2010 Sep; 31(9):N71-7. PubMed ID: 20702917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise-induced hyperemia unmasks regional blood flow deficit in experimental hindlimb ischemia.
    Brevetti LS; Paek R; Brady SE; Hoffman JI; Sarkar R; Messina LM
    J Surg Res; 2001 Jun; 98(1):21-6. PubMed ID: 11368533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries.
    Clifford PS; Kluess HA; Hamann JJ; Buckwalter JB; Jasperse JL
    J Physiol; 2006 Apr; 572(Pt 2):561-7. PubMed ID: 16497720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for parasympathetic vasodilator fibres in the rat masseter muscle.
    Ishii H; Niioka T; Sudo E; Izumi H
    J Physiol; 2005 Dec; 569(Pt 2):617-29. PubMed ID: 16051631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local neurogenic regulation of rat hindlimb circulation: role of calcitonin gene-related peptide in vasodilatation after skeletal muscle contraction.
    Yamada M; Ishikawa T; Fujimori A; Goto K
    Br J Pharmacol; 1997 Oct; 122(4):703-9. PubMed ID: 9375967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic regulation of skeletal muscle blood flow in the pig: a non-adrenergic component likely to be mediated by neuropeptide Y.
    Modin A; Pernow J; Lundberg JM
    Acta Physiol Scand; 1993 May; 148(1):1-11. PubMed ID: 8333291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early effects of cervical sympathetic stimulation on cerebral, ocular and cochlear blood flow.
    Beausang-Linder M; Hultcrantz E
    Acta Physiol Scand; 1980 Aug; 109(4):433-7. PubMed ID: 7468262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood-flow and metabolic response in a contracting canine masticatory muscle.
    Ström D; Holm S; Carlsson GE
    Proc Finn Dent Soc; 1989; 85(4-5):251-60. PubMed ID: 2635777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Masseter muscle performance. Significance of structure and metabolism. A morphological and experimental study.
    Ström D
    Swed Dent J Suppl; 1990; 67():1-94. PubMed ID: 2326743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects.
    Lorenzano C; Gilio F; Inghilleri M; Conte A; Fofi L; Manfredi M; Berardelli A
    Exp Brain Res; 2002 Nov; 147(2):186-92. PubMed ID: 12410333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference between male and female rats in cholinergic activity of parasympathetic vasodilatation in the masseter muscle.
    Ishii H; Niioka T; Izumi H
    Arch Oral Biol; 2009 Jun; 54(6):533-42. PubMed ID: 19426964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle.
    Hamann JJ; Buckwalter JB; Clifford PS
    J Physiol; 2004 Jun; 557(Pt 3):1013-20. PubMed ID: 15073277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion.
    Dobson JL; Gladden LB
    J Appl Physiol (1985); 2003 Jan; 94(1):11-9. PubMed ID: 12391133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.