BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23959812)

  • 1. Real-time metabolic monitoring with proton transfer reaction mass spectrometry.
    Winkler K; Herbig J; Kohl I
    J Breath Res; 2013 Sep; 7(3):036006. PubMed ID: 23959812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile compounds in blood headspace and nasal breath.
    Ross BM; Babgi R
    J Breath Res; 2017 Sep; 11(4):046001. PubMed ID: 28671107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry.
    Bikov A; Paschalaki K; Logan-Sinclair R; Horváth I; Kharitonov SA; Barnes PJ; Usmani OS; Paredi P
    BMC Pulm Med; 2013 Jul; 13():43. PubMed ID: 23837867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of ethanol decay in mouth- and nose-exhaled breath measured on-line by selected ion flow tube mass spectrometry following varying doses of alcohol.
    Smith D; Pysanenko A; Spanel P
    Rapid Commun Mass Spectrom; 2010 Apr; 24(7):1066-74. PubMed ID: 20213689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane inlet mass spectrometry method for food intake impact assessment on specific volatile organic compounds in exhaled breath.
    Jakšić M; Mihajlović A; Vujić D; Giannoukos S; Brkić B
    Anal Bioanal Chem; 2022 Aug; 414(20):6077-6091. PubMed ID: 35727330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral or nasal breathing? Real-time effects of switching sampling route onto exhaled VOC concentrations.
    Sukul P; Oertel P; Kamysek S; Trefz P
    J Breath Res; 2017 Mar; 11(2):027101. PubMed ID: 28244881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time monitoring of exhaled volatiles using atmospheric pressure chemical ionization on a compact mass spectrometer.
    Heaney LM; Ruszkiewicz DM; Arthur KL; Hadjithekli A; Aldcroft C; Lindley MR; Thomas CP; Turner MA; Reynolds JC
    Bioanalysis; 2016 Jul; 8(13):1325-36. PubMed ID: 27277875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile organic compounds in exhaled breath are independent of systemic inflammatory syndrome caused by intravenous lipopolysaccharide infusion in humans: results from an experiment in healthy volunteers.
    Peters AL; Gerritsen MG; Brinkman P; Zwinderman KAH; Vlaar APJ; Bos LD
    J Breath Res; 2017 Apr; 11(2):026003. PubMed ID: 28397711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending PTR based breath analysis to real-time monitoring of reactive volatile organic compounds.
    Pugliese G; Trefz P; Brock B; Schubert JK; Miekisch W
    Analyst; 2019 Dec; 144(24):7359-7367. PubMed ID: 31663533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry.
    Boshier PR; Marczin N; Hanna GB
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1070-4. PubMed ID: 20335048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?
    Smith D; Spaněl P; Fryer AA; Hanna F; Ferns GA
    J Breath Res; 2011 Jun; 5(2):022001. PubMed ID: 21512208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of respiratory variables on the on-line detection of exhaled trace gases by PTR-MS.
    Boshier PR; Priest OH; Hanna GB; Marczin N
    Thorax; 2011 Oct; 66(10):919-20. PubMed ID: 21474496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the importance of accurate quantification of individual volatile metabolites in exhaled breath.
    Smith D; Španěl P
    J Breath Res; 2017 Nov; 11(4):047106. PubMed ID: 28635619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.
    Bregy L; Sinues PM; Nudnova MM; Zenobi R
    J Breath Res; 2014 Jun; 8(2):027102. PubMed ID: 24682106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry.
    Trefz P; Schmidt M; Oertel P; Obermeier J; Brock B; Kamysek S; Dunkl J; Zimmermann R; Schubert JK; Miekisch W
    Anal Chem; 2013 Nov; 85(21):10321-9. PubMed ID: 24044609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing patterns of volatile organic compounds exhaled in breath after consumption of two infant formulae with a different lipid structure: a randomized trial.
    Smolinska A; Baranska A; Dallinga JW; Mensink RP; Baumgartner S; van de Heijning BJM; van Schooten FJ
    Sci Rep; 2019 Jan; 9(1):554. PubMed ID: 30679671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time monitoring of respiratory absorption factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass spectrometry.
    Huang Z; Zhang Y; Yan Q; Zhang Z; Wang X
    J Hazard Mater; 2016 Dec; 320():547-555. PubMed ID: 27597155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath.
    Slingers G; Goossens R; Janssens H; Spruyt M; Goelen E; Vanden EM; Raes M; Koppen G
    J Breath Res; 2020 Jul; 14(3):036006. PubMed ID: 32422613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric pressure chemical ionization mass spectrometry of pyridine and isoprene: potential breath exposure and disease biomarkers.
    Kapishon V; Koyanagi GK; Blagojevic V; Bohme DK
    J Breath Res; 2013 Jun; 7(2):026005. PubMed ID: 23579200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS.
    Righettoni M; Schmid A; Amann A; Pratsinis SE
    J Breath Res; 2013 Sep; 7(3):037110. PubMed ID: 23959908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.