These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 23960207)
21. Systematic, balancing gradients in neuron density and number across the primate isocortex. Cahalane DJ; Charvet CJ; Finlay BL Front Neuroanat; 2012; 6():28. PubMed ID: 22826696 [TBL] [Abstract][Full Text] [Related]
22. The basic nonuniformity of the cerebral cortex. Herculano-Houzel S; Collins CE; Wong P; Kaas JH; Lent R Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12593-8. PubMed ID: 18689685 [TBL] [Abstract][Full Text] [Related]
23. Non-uniformity of neocortex: areal heterogeneity of NADPH-diaphorase reactive neurons in adult macaque monkeys. Barone P; Kennedy H Cereb Cortex; 2000 Feb; 10(2):160-74. PubMed ID: 10667984 [TBL] [Abstract][Full Text] [Related]
24. M and P retinal ganglion cells of the owl monkey: morphology, size and photoreceptor convergence. Yamada ES; Silveira LC; Perry VH; Franco EC Vision Res; 2001 Jan; 41(2):119-31. PubMed ID: 11163848 [TBL] [Abstract][Full Text] [Related]
25. DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes. Harada ML; Schneider H; Schneider MP; Sampaio I; Czelusniak J; Goodman M Mol Phylogenet Evol; 1995 Sep; 4(3):331-49. PubMed ID: 8845968 [TBL] [Abstract][Full Text] [Related]
26. Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. La Rosa C; Cavallo F; Pecora A; Chincarini M; Ala U; Faulkes CG; Nacher J; Cozzi B; Sherwood CC; Amrein I; Bonfanti L Elife; 2020 Jul; 9():. PubMed ID: 32690132 [TBL] [Abstract][Full Text] [Related]
27. Parvalbumin-, calbindin-, and calretinin-immunoreactive neurons in the prefrontal cortex of the owl monkey (Aotus trivirgatus): a standardized quantitative comparison with sensory and motor areas. Elston GN; González-Albo MC Brain Behav Evol; 2003; 62(1):19-30. PubMed ID: 12907857 [TBL] [Abstract][Full Text] [Related]
28. The sizes and distribution of ganglion cells in the retina of the owl monkey. Aotus trivirgatus. Webb SV; Kaas JH Vision Res; 1976; 16(11):1247-54. PubMed ID: 827113 [No Abstract] [Full Text] [Related]
29. Positive selection on NIN, a gene involved in neurogenesis, and primate brain evolution. Montgomery SH; Mundy NI Genes Brain Behav; 2012 Nov; 11(8):903-10. PubMed ID: 22937743 [TBL] [Abstract][Full Text] [Related]
30. A laminar analysis of the number of neurons, glia, and synapses in the adult cortex (area 17) of adult macaque monkeys. O'Kusky J; Colonnier M J Comp Neurol; 1982 Sep; 210(3):278-90. PubMed ID: 7142443 [TBL] [Abstract][Full Text] [Related]
31. Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates. Merrill DA; Roberts JA; Tuszynski MH J Comp Neurol; 2000 Jul; 422(3):396-401. PubMed ID: 10861515 [TBL] [Abstract][Full Text] [Related]
32. Neocortical and hippocampal neuron and glial cell numbers in the rhesus monkey. Christensen JR; Larsen KB; Lisanby SH; Scalia J; Arango V; Dwork AJ; Pakkenberg B Anat Rec (Hoboken); 2007 Mar; 290(3):330-40. PubMed ID: 17525948 [TBL] [Abstract][Full Text] [Related]
33. The dorsomedial visual area of owl monkeys: connections, myeloarchitecture, and homologies in other primates. Krubitzer LA; Kaas JH J Comp Neurol; 1993 Aug; 334(4):497-528. PubMed ID: 8408763 [TBL] [Abstract][Full Text] [Related]
34. Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat. Mulders WH; West MJ; Slomianka L J Comp Neurol; 1997 Aug; 385(1):83-94. PubMed ID: 9268118 [TBL] [Abstract][Full Text] [Related]
35. Tactile discrimination capacity in relation to size and organization of somatic sensory cortex in primates: I. Old-World prosimian, Galago; II. New-World anthropoids, Saimiri and Cebus. Carlson M; Nystrom P J Neurosci; 1994 Mar; 14(3 Pt 2):1516-41. PubMed ID: 8126553 [TBL] [Abstract][Full Text] [Related]
36. Hippocampus and dentate gyrus of the Cebus monkey: architectonic and stereological study. Guerreiro-Diniz C; de Melo Paz RB; Hamad MH; Filho CS; Martins AA; Neves HB; de Souza Cunha ED; Alves GC; de Sousa LA; Dias IA; Trévia N; de Sousa AA; Passos A; Lins N; Torres Neto JB; da Costa Vasconcelos PF; Picanço-Diniz CW J Chem Neuroanat; 2010 Oct; 40(2):148-59. PubMed ID: 20558278 [TBL] [Abstract][Full Text] [Related]
37. Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Dombrowski SM; Hilgetag CC; Barbas H Cereb Cortex; 2001 Oct; 11(10):975-88. PubMed ID: 11549620 [TBL] [Abstract][Full Text] [Related]
38. Qualitative and Quantitative Analysis of Primary Neocortical Areas in Selected Mammals. van Kann E; Cozzi B; Hof PR; Oelschläger HHA Brain Behav Evol; 2017; 90(3):193-210. PubMed ID: 28768268 [TBL] [Abstract][Full Text] [Related]
39. Stereology of the neocortex in Odontocetes: qualitative, quantitative, and functional implications. Kern A; Siebert U; Cozzi B; Hof PR; Oelschläger HH Brain Behav Evol; 2011; 77(2):79-90. PubMed ID: 21358169 [TBL] [Abstract][Full Text] [Related]
40. Neocortical Development in Brain of Young Children-A Stereological Study. Kjær M; Fabricius K; Sigaard RK; Pakkenberg B Cereb Cortex; 2017 Dec; 27(12):5477-5484. PubMed ID: 27733541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]