BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23961157)

  • 1. Control of wild oat (Avena fatua) using some phenolic compounds I - Germination and some growth parameters.
    Almaghrabi OA
    Saudi J Biol Sci; 2012 Jan; 19(1):17-24. PubMed ID: 23961157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.).
    Iannucci A; Fragasso M; Platani C; Papa R
    Front Plant Sci; 2013; 4():509. PubMed ID: 24381576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allelopathic potential of wild oat (Avena fatua) on spring wheat (Triticum aestivum) growth.
    Schumacher WJ; Thill DC; Lee GA
    J Chem Ecol; 1983 Aug; 9(8):1235-45. PubMed ID: 24407814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of seed burial depths and post-emergence herbicides on seedling emergence and biomass production of wild oat (Avena fatua L.): Implications for management.
    Maqbool MM; Naz S; Ahmad T; Nisar MS; Mehmood H; Alwahibi MS; Alkahtani J
    PLoS One; 2020; 15(10):e0240944. PubMed ID: 33112902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat.
    Liu X; Tian F; Tian Y; Wu Y; Dong F; Xu J; Zheng Y
    J Agric Food Chem; 2016 May; 64(18):3492-500. PubMed ID: 27079356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heterotoxicity of Hordeum vulgare L. extracts in four growth stages on germination and seedlings growth of Avena ludoviciana.
    Kolahi M; Peivastegan B; Hadizade I; Abdali A
    Pak J Biol Sci; 2008 Jul; 11(14):1825-9. PubMed ID: 18817224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products.
    Nogala-Kałucka M; Kawka A; Dwiecki K; Siger A
    Acta Sci Pol Technol Aliment; 2020; 19(4):405-423. PubMed ID: 33179481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations into the Ability to Reduce Cinnamic Acid as Undesired Precursor of Toxicologically Relevant Styrene in Wort by Different Barley to Wheat Ratios (Grain Bill) during Mashing.
    Kalb V; Seewald T; Hofmann T; Granvogl M
    J Agric Food Chem; 2021 Aug; 69(32):9443-9450. PubMed ID: 34351749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars.
    Chauhan A; AbuAmarah BA; Kumar A; Verma JS; Ghramh HA; Khan KA; Ansari MJ
    Saudi J Biol Sci; 2019 Sep; 26(6):1298-1304. PubMed ID: 31516361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource partitioning in the rhizosphere by inoculated
    Dahiya A; Sharma R; Sindhu S; Sindhu SS
    Physiol Mol Biol Plants; 2019 Nov; 25(6):1483-1495. PubMed ID: 31736550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenolic and short-chained aliphatic organic acid constituents of wild oat (Avena fatua L.) seeds.
    Gallagher RS; Ananth R; Granger K; Bradley B; Anderson JV; Fuerst EP
    J Agric Food Chem; 2010 Jan; 58(1):218-25. PubMed ID: 20017486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation.
    Qi L; Qin X; Li FM; Siddique KH; Brandl H; Xu J; Li X
    Int J Phytoremediation; 2015; 17(1-6):264-71. PubMed ID: 25397985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in shoot tissues.
    Wu H; Haig T; Pratley J; Lemerle D; An M
    J Chem Ecol; 2001 Jan; 27(1):125-35. PubMed ID: 11382058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of maturity at harvest on yield, chemical composition, and in situ degradability for annual cereals used for swath grazing.
    Rosser CL; Górka P; Beattie AD; Block HC; McKinnon JJ; Lardner HA; Penner GB
    J Anim Sci; 2013 Aug; 91(8):3815-26. PubMed ID: 23658356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the inhibition of k absorption in oat roots by salicylic Acid.
    Harper JR; Balke NE
    Plant Physiol; 1981 Dec; 68(6):1349-53. PubMed ID: 16662106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.
    Doehlert DC; Rayas-Duarte P; McMullen MS
    J Food Prot; 2011 Dec; 74(12):2188-91. PubMed ID: 22186063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products.
    Mattila P; Pihlava JM; Hellström J
    J Agric Food Chem; 2005 Oct; 53(21):8290-5. PubMed ID: 16218677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination.
    Xu JG; Tian CR; Hu QP; Luo JY; Wang XD; Tian XD
    J Agric Food Chem; 2009 Nov; 57(21):10392-8. PubMed ID: 19827789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivity of the fungal metabolite (8R,16R)-(-)-pyrenophorin on graminaceous plants.
    Kastanias MA; Chrysayi-Tokousbalides M
    J Agric Food Chem; 2005 Jul; 53(15):5943-7. PubMed ID: 16028978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of oat-based markers from barley and wheat microsatellites.
    Oliver RE; Obert DE; Hu G; Bonman JM; O'Leary-Jepsen E; Jackson EW
    Genome; 2010 Jun; 53(6):458-71. PubMed ID: 20555435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.