BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 239620)

  • 21. Partial bioenergetic characterization of Gluconacetobacter xylinum cells released from cellulose pellicles by a novel methodology.
    Chávez-Pacheco JL; Martínez-Yee S; Contreras ML; Gómez-Manzo S; Membrillo-Hernández J; Escamilla JE
    J Appl Microbiol; 2005; 99(5):1130-40. PubMed ID: 16238743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068.
    Volova TG; Prudnikova SV; Sukovatyi AG; Shishatskaya EI
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7417-7428. PubMed ID: 29982923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor.
    Bae SO; Shoda M
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):45-51. PubMed ID: 15338079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic characteristics of cellulose-forming acetic acid bacteria identified phenotypically as Gluconacetobacter xylinus.
    Tanaka M; Murakami S; Shinke R; Aoki K
    Biosci Biotechnol Biochem; 2000 Apr; 64(4):757-60. PubMed ID: 10830489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carboxymethylated-bacterial cellulose for copper and lead ion removal.
    Chen S; Zou Y; Yan Z; Shen W; Shi S; Zhang X; Wang H
    J Hazard Mater; 2009 Jan; 161(2-3):1355-9. PubMed ID: 18538922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers.
    Lee JW; Deng F; Yeomans WG; Allen AL; Gross RA; Kaplan DL
    Appl Environ Microbiol; 2001 Sep; 67(9):3970-5. PubMed ID: 11525993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus.
    Colvin JR; Leppard GG
    Can J Microbiol; 1977 Jun; 23(6):701-9. PubMed ID: 871970
    [No Abstract]   [Full Text] [Related]  

  • 28. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose.
    HESTRIN S; SCHRAMM M
    Biochem J; 1954 Oct; 58(2):345-52. PubMed ID: 13208601
    [No Abstract]   [Full Text] [Related]  

  • 29. Headspace gas chromatographic determination of ethanol: the use of factorial design to study effects of blood storage and headspace conditions on ethanol stability and acetaldehyde formation in whole blood and plasma.
    Kristoffersen L; Stormyhr LE; Smith-Kielland A
    Forensic Sci Int; 2006 Sep; 161(2-3):151-7. PubMed ID: 16843627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of gluconeogenesis in Acetobacter xylinum by hexoses.
    Weinhouse H; Benziman M
    Biochem Biophys Res Commun; 1971 Apr; 43(2):233-8. PubMed ID: 5577437
    [No Abstract]   [Full Text] [Related]  

  • 31. Synthesis of mannosyl cellobiose diphosphate prenol in Acetobacter xylinum.
    Couso RO; Ielpi L; García RC; Dankert MA
    Arch Biochem Biophys; 1980 Oct; 204(2):435-43. PubMed ID: 6160815
    [No Abstract]   [Full Text] [Related]  

  • 32. Microbial production of homogeneously layered cellulose pellicles in a membrane bioreactor.
    Hofinger M; Bertholdt G; Weuster-Botz D
    Biotechnol Bioeng; 2011 Sep; 108(9):2237-40. PubMed ID: 21495013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes.
    Yoon SH; Jin HJ; Kook MC; Pyun YR
    Biomacromolecules; 2006 Apr; 7(4):1280-4. PubMed ID: 16602750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol.
    Akyilmaz E; Dinçkaya E
    Biosens Bioelectron; 2005 Jan; 20(7):1263-9. PubMed ID: 15590277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics and isotope patterns of ethanol and acetaldehyde emissions from yeast fermentations of glucose and glucose-6,6-d2 using selected ion flow tube mass spectrometry: a case study.
    Smith D; Wang T; Spanel P
    Rapid Commun Mass Spectrom; 2002; 16(1):69-76. PubMed ID: 11754249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of gluconeogenesis in Acetobacter xylinum.
    Weinhouse H; Benziman M
    Eur J Biochem; 1972 Jun; 28(1):83-8. PubMed ID: 5050262
    [No Abstract]   [Full Text] [Related]  

  • 38. Regulation of hexose phosphate metabolism in Acetobacter xylinum.
    Weinhouse H; Benziman M
    Biochem J; 1974 Mar; 138(3):537-42. PubMed ID: 4429547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate accumulation of Acetobacter xylinum.
    Ryazanova LP; Suzina NE; Kulakovskaya TV; Kulaev IS
    Arch Microbiol; 2009 May; 191(5):467-71. PubMed ID: 19308357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production.
    Kylmä AK; Granström T; Leisola M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):584-91. PubMed ID: 12898066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.