These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 23962030)
1. Species differences in intestinal glucuronidation activities between humans, rats, dogs and monkeys. Furukawa T; Naritomi Y; Tetsuka K; Nakamori F; Moriguchi H; Yamano K; Terashita S; Tabata K; Teramura T Xenobiotica; 2014 Mar; 44(3):205-16. PubMed ID: 23962030 [TBL] [Abstract][Full Text] [Related]
2. Glucuronidation of tizoxanide, an active metabolite of nitazoxanide, in liver and small intestine: Species differences in humans, monkeys, dogs, rats, and mice and responsible UDP-glucuronosyltransferase isoforms in humans. Hanioka N; Isobe T; Saito K; Nagaoka K; Mori Y; Jinno H; Ohkawara S; Tanaka-Kagawa T Comp Biochem Physiol C Toxicol Pharmacol; 2024 Sep; 283():109962. PubMed ID: 38889874 [TBL] [Abstract][Full Text] [Related]
3. Hepatic microsomal UDP-glucuronosyltransferase (UGT) activities in the microminipig. Higashi E; Ando A; Iwano S; Murayama N; Yamazaki H; Miyamoto Y Biopharm Drug Dispos; 2014 Sep; 35(6):313-20. PubMed ID: 24752421 [TBL] [Abstract][Full Text] [Related]
4. S-equol glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice. Isobe T; Ohkawara S; Ochi S; Tanaka-Kagawa T; Hanioka N Food Chem Toxicol; 2019 Sep; 131():110542. PubMed ID: 31163218 [TBL] [Abstract][Full Text] [Related]
5. Method for predicting human intestinal first-pass metabolism of UGT substrate compounds. Furukawa T; Yamano K; Naritomi Y; Tanaka K; Terashita S; Teramura T Xenobiotica; 2012 Oct; 42(10):980-8. PubMed ID: 22540538 [TBL] [Abstract][Full Text] [Related]
6. Wogonin glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice. Hanioka N; Isobe T; Tanaka-Kagawa T; Ohkawara S Xenobiotica; 2020 Aug; 50(8):906-912. PubMed ID: 32005083 [TBL] [Abstract][Full Text] [Related]
8. Regioselective glucuronidation of daidzein in liver and intestinal microsomes of humans, monkeys, rats, and mice. Hanioka N; Ohkawara S; Isobe T; Ochi S; Tanaka-Kagawa T; Jinno H Arch Toxicol; 2018 Sep; 92(9):2809-2817. PubMed ID: 30014295 [TBL] [Abstract][Full Text] [Related]
9. In Vitro Glucuronidation of Wushanicaritin by Liver Microsomes, Intestine Microsomes and Expressed Human UDP-Glucuronosyltransferase Enzymes. Hong X; Zheng Y; Qin Z; Wu B; Dai Y; Gao H; Yao Z; Gonzalez FJ; Yao X Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28925930 [TBL] [Abstract][Full Text] [Related]
10. Prediction of hepatic and intestinal glucuronidation using in vitro-in vivo extrapolation. Naritomi Y; Nakamori F; Furukawa T; Tabata K Drug Metab Pharmacokinet; 2015 Feb; 30(1):21-9. PubMed ID: 25760528 [TBL] [Abstract][Full Text] [Related]
11. Naringenin glucuronidation in liver and intestine microsomes of humans, monkeys, rats, and mice. Isobe T; Ohkawara S; Ochi S; Tanaka-Kagawa T; Jinno H; Hanioka N Food Chem Toxicol; 2018 Jan; 111():417-422. PubMed ID: 29198856 [TBL] [Abstract][Full Text] [Related]
12. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Gill KL; Houston JB; Galetin A Drug Metab Dispos; 2012 Apr; 40(4):825-35. PubMed ID: 22275465 [TBL] [Abstract][Full Text] [Related]
13. Comparison of intestinal metabolism of CYP3A substrates between rats and humans: application of portal-systemic concentration difference method. Kadono K; Koakutsu A; Naritomi Y; Terashita S; Tabata K; Teramura T Xenobiotica; 2014 Jun; 44(6):511-21. PubMed ID: 24329478 [TBL] [Abstract][Full Text] [Related]
14. Highly selective N-glucuronidation of four piperazine-containing drugs by UDP-glucuronosyltransferase 2B10. Lu D; Dong D; Wu B Expert Opin Drug Metab Toxicol; 2018 Sep; 14(9):989-998. PubMed ID: 30049229 [TBL] [Abstract][Full Text] [Related]
15. Quantitative prediction of human intestinal glucuronidation effects on intestinal availability of UDP-glucuronosyltransferase substrates using in vitro data. Nakamori F; Naritomi Y; Hosoya K; Moriguchi H; Tetsuka K; Furukawa T; Kadono K; Yamano K; Terashita S; Teramura T Drug Metab Dispos; 2012 Sep; 40(9):1771-7. PubMed ID: 22685216 [TBL] [Abstract][Full Text] [Related]
16. Impact of intestinal glucuronidation on the pharmacokinetics of raloxifene. Kosaka K; Sakai N; Endo Y; Fukuhara Y; Tsuda-Tsukimoto M; Ohtsuka T; Kino I; Tanimoto T; Takeba N; Takahashi M; Kume T Drug Metab Dispos; 2011 Sep; 39(9):1495-502. PubMed ID: 21646435 [TBL] [Abstract][Full Text] [Related]
17. Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs. Nishimuta H; Nakagawa T; Nomura N; Yabuki M Xenobiotica; 2013 Nov; 43(11):948-55. PubMed ID: 23593983 [TBL] [Abstract][Full Text] [Related]
18. Regioselective glucuronidation of denopamine: marked species differences and identification of human udp-glucuronosyltransferase isoform. Kaji H; Kume T Drug Metab Dispos; 2005 Mar; 33(3):403-12. PubMed ID: 15608137 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo small intestinal metabolism of CYP3A and UGT substrates in preclinical animals species and humans: species differences. Komura H; Iwaki M Drug Metab Rev; 2011 Nov; 43(4):476-98. PubMed ID: 21859377 [TBL] [Abstract][Full Text] [Related]
20. Steviol glucuronidation and its potential interaction with UDP-glucuronosyltransferase 2B7 substrates. Wang M; Lu J; Li J; Qi H; Wang Y; Zhang H Food Chem Toxicol; 2014 Feb; 64():135-43. PubMed ID: 24296138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]