These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23962156)

  • 1. Robust red FRET sensors using self-associating fluorescent domains.
    Lindenburg LH; Hessels AM; Ebberink EH; Arts R; Merkx M
    ACS Chem Biol; 2013 Oct; 8(10):2133-9. PubMed ID: 23962156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New alternately colored FRET sensors for simultaneous monitoring of Zn²⁺ in multiple cellular locations.
    Miranda JG; Weaver AL; Qin Y; Park JG; Stoddard CI; Lin MZ; Palmer AE
    PLoS One; 2012; 7(11):e49371. PubMed ID: 23173058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blue fluorescent cGMP sensor for multiparameter fluorescence imaging.
    Niino Y; Hotta K; Oka K
    PLoS One; 2010 Feb; 5(2):e9164. PubMed ID: 20161796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous visualization of protumorigenic Src and MT1-MMP activities with fluorescence resonance energy transfer.
    Ouyang M; Huang H; Shaner NC; Remacle AG; Shiryaev SA; Strongin AY; Tsien RY; Wang Y
    Cancer Res; 2010 Mar; 70(6):2204-12. PubMed ID: 20197470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of förster resonance energy transfer sensors.
    Lindenburg LH; Malisauskas M; Sips T; van Oppen L; Wijnands SP; van de Graaf SF; Merkx M
    Biochemistry; 2014 Oct; 53(40):6370-81. PubMed ID: 25216081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2.
    Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J
    Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Dependent Expression of a CFP-YFP FRET Diacylglycerol Sensor Enables Multiple-Read Screening for Compounds That Affect C1 Domains.
    Yang XA; Zweifach A
    SLAS Discov; 2019 Jul; 24(6):682-692. PubMed ID: 30802416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time detection of cellular death receptor-4 activation by fluorescence resonance energy transfer.
    Dereli-Korkut Z; Gandhok H; Zeng LG; Waqas S; Jiang X; Wang S
    Biotechnol Bioeng; 2013 May; 110(5):1396-404. PubMed ID: 23239419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically encoded far-red fluorescent sensors for caspase-3 activity.
    Zlobovskaya OA; Sergeeva TF; Shirmanova MV; Dudenkova VV; Sharonov GV; Zagaynova EV; Lukyanov KA
    Biotechniques; 2016 Feb; 60(2):62-8. PubMed ID: 26842350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo analysis of the 2-Cys peroxiredoxin oligomeric state by two-step FRET.
    Seidel T; Seefeldt B; Sauer M; Dietz KJ
    J Biotechnol; 2010 Sep; 149(4):272-9. PubMed ID: 20615439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving FRET dynamic range with bright green and red fluorescent proteins.
    Lam AJ; St-Pierre F; Gong Y; Marshall JD; Cranfill PJ; Baird MA; McKeown MR; Wiedenmann J; Davidson MW; Schnitzer MJ; Tsien RY; Lin MZ
    Nat Methods; 2012 Oct; 9(10):1005-12. PubMed ID: 22961245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores.
    Laine R; Stuckey DW; Manning H; Warren SC; Kennedy G; Carling D; Dunsby C; Sardini A; French PM
    PLoS One; 2012; 7(11):e49200. PubMed ID: 23152874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations.
    Van Geel O; Cheung S; Gadella TWJ
    Sci Rep; 2020 Apr; 10(1):6034. PubMed ID: 32265472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.
    George Abraham B; Sarkisyan KS; Mishin AS; Santala V; Tkachenko NV; Karp M
    PLoS One; 2015; 10(8):e0134436. PubMed ID: 26237400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.