These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23962156)

  • 21. A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
    Xu L; Wang L; Zhang Z; Huang ZL
    J Fluoresc; 2013 May; 23(3):543-9. PubMed ID: 23456419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced dynamic range in a genetically encoded Ca2+ sensor.
    Liu S; He J; Jin H; Yang F; Lu J; Yang J
    Biochem Biophys Res Commun; 2011 Aug; 412(1):155-9. PubMed ID: 21806972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
    Zimmermann T; Rietdorf J; Girod A; Georget V; Pepperkok R
    FEBS Lett; 2002 Nov; 531(2):245-9. PubMed ID: 12417320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intramolecular Fluorescent Protein Association in a Class of Zinc FRET Sensors Leads to Increased Dynamic Range.
    Slocum JD; Palmer AE; Jimenez R
    J Phys Chem B; 2019 Apr; 123(14):3079-3085. PubMed ID: 30942588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.
    Komatsubara AT; Matsuda M; Aoki K
    Sci Rep; 2015 Aug; 5():13283. PubMed ID: 26290434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.
    Murakoshi H; Lee SJ; Yasuda R
    Brain Cell Biol; 2008 Aug; 36(1-4):31-42. PubMed ID: 18512154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies.
    Currie M; Leopold H; Schwarz J; Boersma AJ; Sheets ED; Heikal AA
    J Phys Chem B; 2017 Jun; 121(23):5688-5698. PubMed ID: 28520430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments.
    Kolossov VL; Spring BQ; Clegg RM; Henry JJ; Sokolowski A; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2011 Jun; 236(6):681-91. PubMed ID: 21606117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras.
    Evers TH; Appelhof MA; de Graaf-Heuvelmans PT; Meijer EW; Merkx M
    J Mol Biol; 2007 Nov; 374(2):411-25. PubMed ID: 17936298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering FRET constructs using CFP and YFP.
    Shimozono S; Miyawaki A
    Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe.
    Wu X; Simone J; Hewgill D; Siegel R; Lipsky PE; He L
    Cytometry A; 2006 Jun; 69(6):477-86. PubMed ID: 16683263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-Vitro Characterization of mCerulean3_mRuby3 as a Novel FRET Pair with Favorable Bleed-Through Characteristics.
    Erismann-Ebner K; Marowsky A; Arand M
    Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30823443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of weak helper interactions for high-efficiency FRET probes.
    Grünberg R; Burnier JV; Ferrar T; Beltran-Sastre V; Stricher F; van der Sloot AM; Garcia-Olivas R; Mallabiabarrena A; Sanjuan X; Zimmermann T; Serrano L
    Nat Methods; 2013 Oct; 10(10):1021-7. PubMed ID: 23995386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Readout BRET/FRET Sensors for Measuring Intracellular Zinc.
    Aper SJ; Dierickx P; Merkx M
    ACS Chem Biol; 2016 Oct; 11(10):2854-2864. PubMed ID: 27547982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting protein-protein interactions with CFP-YFP FRET by acceptor photobleaching.
    Karpova T; McNally JG
    Curr Protoc Cytom; 2006 Feb; Chapter 12():Unit12.7. PubMed ID: 18770833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. eZinCh-2: A Versatile, Genetically Encoded FRET Sensor for Cytosolic and Intraorganelle Zn(2+) Imaging.
    Hessels AM; Chabosseau P; Bakker MH; Engelen W; Rutter GA; Taylor KM; Merkx M
    ACS Chem Biol; 2015 Sep; 10(9):2126-34. PubMed ID: 26151333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP->YFP->mRFP FRET detected by flow cytometry.
    He L; Wu X; Simone J; Hewgill D; Lipsky PE
    Nucleic Acids Res; 2005 Apr; 33(6):e61. PubMed ID: 15805120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering genetically encoded FRET sensors.
    Lindenburg L; Merkx M
    Sensors (Basel); 2014 Jul; 14(7):11691-713. PubMed ID: 24991940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.