BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23962166)

  • 1. Comparative characterization and cytotoxicity study of TAT-peptide as potential vectors for siRNA and Dicer-substrate siRNA.
    Katas H; Abdul Ghafoor Raja M; Ee LC
    Drug Dev Ind Pharm; 2014 Nov; 40(11):1443-50. PubMed ID: 23962166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptide-modified MPEG-PCL nanomicelles.
    Kanazawa T; Sugawara K; Tanaka K; Horiuchi S; Takashima Y; Okada H
    Eur J Pharm Biopharm; 2012 Aug; 81(3):470-7. PubMed ID: 22579732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Colonic Delivery of DsiRNA by Pectin-Coated Polyelectrolyte Complex Nanoparticles: Preparation, Characterization and Improved Gastric Survivability.
    Hussain Z; Katas H; Yan SL; Jamaludin D
    Curr Drug Deliv; 2017; 14(7):1016-1027. PubMed ID: 28240178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivery of therapeutic shRNA and siRNA by Tat fusion peptide targeting BCR-ABL fusion gene in Chronic Myeloid Leukemia cells.
    Arthanari Y; Pluen A; Rajendran R; Aojula H; Demonacos C
    J Control Release; 2010 Aug; 145(3):272-80. PubMed ID: 20403398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterization of a new peptide vector for short interfering RNA delivery.
    Chen B; Xu W; Pan R; Chen P
    J Nanobiotechnology; 2015 Jun; 13():39. PubMed ID: 26054932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical characterization of siRNA-peptide complexes.
    Law M; Jafari M; Chen P
    Biotechnol Prog; 2008; 24(4):957-63. PubMed ID: 19194904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery.
    Wan Y; Moyle PM; Gn PZ; Toth I
    Nanomedicine (Lond); 2017 Feb; 12(4):281-293. PubMed ID: 28093948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical characterization and in vitro uptake.
    Jafari M; Xu W; Naahidi S; Chen B; Chen P
    J Phys Chem B; 2012 Nov; 116(44):13183-91. PubMed ID: 23077976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing.
    Baoum A; Ovcharenko D; Berkland C
    Int J Pharm; 2012 May; 427(1):134-42. PubMed ID: 21856394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA.
    Malhotra M; Tomaro-Duchesneau C; Saha S; Kahouli I; Prakash S
    Int J Nanomedicine; 2013; 8():2041-52. PubMed ID: 23723699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.
    Sevimli S; Sagnella S; Kavallaris M; Bulmus V; Davis TP
    Biomacromolecules; 2013 Nov; 14(11):4135-49. PubMed ID: 24125032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient intracellular siRNA delivery strategy through rapid and simple two steps mixing involving noncovalent post-PEGylation.
    Kong WH; Sung DK; Shim YH; Bae KH; Dubois P; Park TG; Kim JH; Seo SW
    J Control Release; 2009 Sep; 138(2):141-7. PubMed ID: 19426771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus-mimetic polymeric micelles for targeted siRNA delivery.
    Xiong XB; Uludağ H; Lavasanifar A
    Biomaterials; 2010 Aug; 31(22):5886-93. PubMed ID: 20427082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of cationic amphiphilic cyclodextrins for neuronal delivery of siRNA: effect of reversing primary and secondary face modifications.
    O'Mahony AM; Doyle D; Darcy R; Cryan JF; O'Driscoll CM
    Eur J Pharm Sci; 2012 Dec; 47(5):896-903. PubMed ID: 23022516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and evaluation of a peptide-based siRNA delivery system in vitro.
    Chen B; Yoo K; Xu W; Pan R; Han XX; Chen P
    Drug Deliv Transl Res; 2017 Aug; 7(4):507-515. PubMed ID: 28349343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles.
    Kanazawa T; Morisaki K; Suzuki S; Takashima Y
    Mol Pharm; 2014 May; 11(5):1471-8. PubMed ID: 24708261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate.
    Peng J; Rao Y; Yang X; Jia J; Wu Y; Lu J; Tao Y; Tu W
    Neurosci Lett; 2017 May; 650():153-160. PubMed ID: 28450191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides.
    Kang H; DeLong R; Fisher MH; Juliano RL
    Pharm Res; 2005 Dec; 22(12):2099-106. PubMed ID: 16184444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery.
    Tanaka K; Kanazawa T; Horiuchi S; Ando T; Sugawara K; Takashima Y; Seta Y; Okada H
    Int J Pharm; 2013 Oct; 455(1-2):40-7. PubMed ID: 23911914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid Crystalline Nanodispersions Functionalized with Cell-Penetrating Peptides for Topical Delivery of Short-Interfering RNAs: A Proposal for Silencing a Pro-Inflammatory Cytokine in Cutaneous Diseases.
    Petrilli R; Eloy JO; Praça FS; Del Ciampo JO; Fantini MA; Fonseca MJ; Bentley MV
    J Biomed Nanotechnol; 2016 May; 12(5):1063-75. PubMed ID: 27305826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.