These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 23962528)

  • 1. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking.
    Jung Y; Jung M; Lee K; Koo S
    J Biomech; 2014 Aug; 47(11):2693-9. PubMed ID: 24917473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the ground reaction force prediction accuracy using one-axis plantar pressure: Expansion of input variable for neural network.
    Joo SB; Oh SE; Mun JH
    J Biomech; 2016 Oct; 49(14):3153-3161. PubMed ID: 27515436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spring-loaded inverted pendulum modeling improves neural network estimation of ground reaction forces.
    Kim B; Lim H; Park S
    J Biomech; 2020 Dec; 113():110069. PubMed ID: 33142204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of ground reaction force using Zero Moment Point.
    Dijkstra EJ; Gutierrez-Farewik EM
    J Biomech; 2015 Nov; 48(14):3776-81. PubMed ID: 26482731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Complete Ground Reaction Forces and Moments During Gait With Insole Plantar Pressure Information Using a Wavelet Neural Network.
    Sim T; Kwon H; Oh SE; Joo SB; Choi A; Heo HM; Kim K; Mun JH
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26102486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture.
    Karatsidis A; Bellusci G; Schepers HM; de Zee M; Andersen MS; Veltink PH
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural network-based prediction of missing key features in vertical GRF-time recordings.
    Begg RK
    J Med Eng Technol; 2006; 30(5):315-22. PubMed ID: 16980287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait.
    Villeger D; Costes A; Watier B; Moretto P
    Med Eng Phys; 2014 Nov; 36(11):1530-5. PubMed ID: 25239287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the ground reaction forces from a single video camera based on the spring-like center of mass dynamics of human walking.
    Jeong H; Park S
    J Biomech; 2020 Dec; 113():110074. PubMed ID: 33176224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics.
    Ren L; Jones RK; Howard D
    J Biomech; 2008 Aug; 41(12):2750-9. PubMed ID: 18672243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground reaction forces during gait in pregnant fallers and non-fallers.
    McCrory JL; Chambers AJ; Daftary A; Redfern MS
    Gait Posture; 2011 Oct; 34(4):524-8. PubMed ID: 21820902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the vertical ground reaction forces acting upon individual limbs during healthy and clinical gait.
    Meurisse GM; Dierick F; Schepens B; Bastien GJ
    Gait Posture; 2016 Jan; 43():245-50. PubMed ID: 26549482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground reaction forces and muscle activity while walking on sand versus stable ground in individuals with pronated feet compared with healthy controls.
    Jafarnezhadgero A; Fatollahi A; Amirzadeh N; Siahkouhian M; Granacher U
    PLoS One; 2019; 14(9):e0223219. PubMed ID: 31557258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning ground reaction forces for multi-segment foot joint kinetics.
    Bruening DA; Takahashi KZ
    Gait Posture; 2018 May; 62():111-116. PubMed ID: 29544155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sagittal plane ground reaction forces, centre of pressure and centre of mass in trotting horses.
    Hobbs SJ; Clayton HM
    Vet J; 2013 Dec; 198 Suppl 1():e14-9. PubMed ID: 24138935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.