These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23962695)

  • 1. Radical production inside an acoustically driven microbubble.
    Stricker L; Lohse D
    Ultrason Sonochem; 2014 Jan; 21(1):336-45. PubMed ID: 23962695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of an approximate model for the thermal behavior in acoustically driven bubbles.
    Stricker L; Prosperetti A; Lohse D
    J Acoust Soc Am; 2011 Nov; 130(5):3243-51. PubMed ID: 22087996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of O Radicals from Cavitation Bubbles under Ultrasound.
    Yasui K
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interacting bubble clouds and their sonochemical production.
    Stricker L; Dollet B; Fernández Rivas D; Lohse D
    J Acoust Soc Am; 2013 Sep; 134(3):1854-62. PubMed ID: 23967919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notes on radial oscillations of gas bubbles in liquids: thermal effects.
    Zhang Y; Li SC
    J Acoust Soc Am; 2010 Nov; 128(5):EL306-9. PubMed ID: 21110543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles.
    Tsiglifis K; Pelekasis NA
    Ultrason Sonochem; 2007 Apr; 14(4):456-69. PubMed ID: 17208501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of single-bubble sonochemistry.
    Yasui K; Tuziuti T; Sivakumar M; Iida Y
    J Chem Phys; 2005 Jun; 122(22):224706. PubMed ID: 15974702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the effect of carbon-dioxide gas on cavitation.
    Gireesan S; Pandit AB
    Ultrason Sonochem; 2017 Jan; 34():721-728. PubMed ID: 27773299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound artificially nucleated bubbles and their sonochemical radical production.
    Fernandez Rivas D; Stricker L; Zijlstra AG; Gardeniers HJ; Lohse D; Prosperetti A
    Ultrason Sonochem; 2013 Jan; 20(1):510-24. PubMed ID: 22939003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes.
    Kauer M; Belova-Magri V; Cairós C; Linka G; Mettin R
    Ultrason Sonochem; 2018 Nov; 48():39-50. PubMed ID: 30080564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
    Loughran J; Eckersley RJ; Tang MX
    J Acoust Soc Am; 2012 Jun; 131(6):4349-57. PubMed ID: 22712909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Reducing Agents in Sonochemical Reactions without Any Additives.
    Yasui K
    Molecules; 2023 May; 28(10):. PubMed ID: 37241940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105511. PubMed ID: 33812247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.