These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Planar Dirac electrons in magnetic quantum dots. Yang N; Zhu JL J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306 [TBL] [Abstract][Full Text] [Related]
3. Electron spin resonance in presence of a magnetic impurity in graphene. Ghosh A; Pinto JW; Frota HO J Magn Reson; 2013 Feb; 227():87-92. PubMed ID: 23314256 [TBL] [Abstract][Full Text] [Related]
4. RKKY interaction in graphene with a line defect. Jiang L; Zhao X; Zheng Y J Phys Condens Matter; 2015 Feb; 27(4):046003. PubMed ID: 25566946 [TBL] [Abstract][Full Text] [Related]
5. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene. Reatto L; Galli DE; Nava M; Cole MW J Phys Condens Matter; 2013 Nov; 25(44):443001. PubMed ID: 24113280 [TBL] [Abstract][Full Text] [Related]
6. Graphene nanoring as a tunable source of polarized electrons. Munárriz J; Domínguez-Adame F; Orellana PA; Malyshev AV Nanotechnology; 2012 May; 23(20):205202. PubMed ID: 22543955 [TBL] [Abstract][Full Text] [Related]
8. Thermopower and conductance for a graphene p-n junction. Lv SH; Feng SB; Li YX J Phys Condens Matter; 2012 Apr; 24(14):145801. PubMed ID: 22410842 [TBL] [Abstract][Full Text] [Related]
9. Electronic properties of a graphene antidot in magnetic fields. Park PS; Kim SC; Yang SR J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear magnetotransport theory and Hall induced resistance oscillations in graphene. Gutiérrez-Jáuregui R; Torres M J Phys Condens Matter; 2014 Jun; 26(23):235501. PubMed ID: 24827913 [TBL] [Abstract][Full Text] [Related]
11. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface. Ou L; Luo Y; Wei G J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466 [TBL] [Abstract][Full Text] [Related]
12. Density functional study of structural defects in h-BNC2 sheets. Srivastava P; Sen P J Phys Condens Matter; 2013 Jan; 25(2):025304. PubMed ID: 23220908 [TBL] [Abstract][Full Text] [Related]
13. Equations-of-motion method for triplet excitation operators in graphene. Jafari SA; Baskaran G J Phys Condens Matter; 2012 Mar; 24(9):095601. PubMed ID: 22317782 [TBL] [Abstract][Full Text] [Related]
14. Band gap opening of graphene by doping small boron nitride domains. Fan X; Shen Z; Liu AQ; Kuo JL Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594 [TBL] [Abstract][Full Text] [Related]
15. Possible formation of chiral polarons in graphene. Kandemir BS J Phys Condens Matter; 2013 Jan; 25(2):025302. PubMed ID: 23196977 [TBL] [Abstract][Full Text] [Related]
16. Exchange interaction between magnetic impurities on surfaces of Cu(x)Pd(1-x) and Cu(x)Au(1-x) random substitutional alloys. Ujfalussy B; Simon E J Phys Condens Matter; 2014 Jul; 26(27):274211. PubMed ID: 24934437 [TBL] [Abstract][Full Text] [Related]
17. Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling. Boukhvalov DW; Son YW Nanoscale; 2012 Jan; 4(2):417-20. PubMed ID: 22113262 [TBL] [Abstract][Full Text] [Related]
18. A pseudopotential model for Dirac electrons in graphene with line defects. Ebert D; Zhukovsky VCh; Stepanov EA J Phys Condens Matter; 2014 Mar; 26(12):125502. PubMed ID: 24594761 [TBL] [Abstract][Full Text] [Related]
19. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616 [TBL] [Abstract][Full Text] [Related]
20. Anisotropic AC conductivity of strained graphene. Oliva-Leyva M; Naumis GG J Phys Condens Matter; 2014 Mar; 26(12):125302. PubMed ID: 24599054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]