These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23962961)

  • 81. A linear-time algorithm for reconstructing zero-recombinant haplotype configuration on a pedigree.
    Lai EY; Wang WB; Jiang T; Wu KP
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S19. PubMed ID: 23281626
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Finding consistent gene transmission patterns on large and complex pedigrees.
    Pirinen M; Gasbarra D
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(3):252-62. PubMed ID: 17048463
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Estimating variable effective population sizes from multiple genomes: a sequentially markov conditional sampling distribution approach.
    Sheehan S; Harris K; Song YS
    Genetics; 2013 Jul; 194(3):647-62. PubMed ID: 23608192
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Simulation of 'hitch-hiking' genealogies.
    Slade PF
    J Math Biol; 2001 Jan; 42(1):41-70. PubMed ID: 11271508
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Haplotype Inference.
    Song S; Li X; Li J
    Methods Mol Biol; 2017; 1666():469-484. PubMed ID: 28980260
    [TBL] [Abstract][Full Text] [Related]  

  • 86. An MCMC algorithm for haplotype assembly from whole-genome sequence data.
    Bansal V; Halpern AL; Axelrod N; Bafna V
    Genome Res; 2008 Aug; 18(8):1336-46. PubMed ID: 18676820
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Search for haplotype interactions that influence susceptibility to type 1 diabetes, through use of unphased genotype data.
    Zhang J; Liang F; Dassen WR; Veldman BA; Doevendans PA; De Gunst M
    Am J Hum Genet; 2003 Dec; 73(6):1385-401. PubMed ID: 14639528
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Achieving irreducibility of the Markov chain Monte Carlo method applied to pedigree data.
    Lin S; Thompson E; Wijsman E
    IMA J Math Appl Med Biol; 1993; 10(1):1-17. PubMed ID: 8409623
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Monte Carlo Strategies for Selecting Parameter Values in Simulation Experiments.
    Leigh JW; Bryant D
    Syst Biol; 2015 Sep; 64(5):741-51. PubMed ID: 26012871
    [TBL] [Abstract][Full Text] [Related]  

  • 90. High-accuracy haplotype imputation using unphased genotype data as the references.
    Li W; Xu W; Fu G; Ma L; Richards J; Rao W; Bythwood T; Guo S; Song Q
    Gene; 2015 Nov; 572(2):279-84. PubMed ID: 26232609
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Robust inference of population size histories from genomic sequencing data.
    Upadhya G; Steinrücken M
    PLoS Comput Biol; 2022 Sep; 18(9):e1010419. PubMed ID: 36112715
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Generating consistent genotypic configurations for multi-allelic loci and large complex pedigrees.
    Heath SC
    Hum Hered; 1998; 48(1):1-11. PubMed ID: 9463795
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Markov chain Monte Carlo and expectation maximization approaches for estimation of haplotype frequencies for multiply infected human blood samples.
    Ken-Dror G; Hastings IM
    Malar J; 2016 Aug; 15(1):430. PubMed ID: 27557806
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Association mapping and significance estimation via the coalescent.
    Kimmel G; Karp RM; Jordan MI; Halperin E
    Am J Hum Genet; 2008 Dec; 83(6):675-83. PubMed ID: 19026399
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.
    Drummond AJ; Nicholls GK; Rodrigo AG; Solomon W
    Genetics; 2002 Jul; 161(3):1307-20. PubMed ID: 12136032
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A coalescent-based method for population tree inference with haplotypes.
    Wu Y
    Bioinformatics; 2015 Mar; 31(5):691-8. PubMed ID: 25344500
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fine-scale mapping of disease genes with multiple mutations via spatial clustering techniques.
    Molitor J; Marjoram P; Thomas D
    Am J Hum Genet; 2003 Dec; 73(6):1368-84. PubMed ID: 14631555
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Estimating Haplotype Structure and Frequencies: A Bayesian Approach to Unknown Design in Pooled Genomic Data.
    Wang Y; Dutta R; Futschik A
    J Comput Biol; 2024 Aug; 31(8):708-726. PubMed ID: 38957993
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Inferring haplotypes from genotypes on a pedigree with mutations, genotyping errors and missing alleles.
    Wang WB; Jiang T
    J Bioinform Comput Biol; 2011 Apr; 9(2):339-65. PubMed ID: 21523936
    [TBL] [Abstract][Full Text] [Related]  

  • 100. An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood.
    Anderson EC
    Genetics; 2005 Jun; 170(2):955-67. PubMed ID: 15834143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.