These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2396329)

  • 1. Effects of physical parameters on high temperature ultrasound hyperthermia.
    Billard BE; Hynynen K; Roemer RB
    Ultrasound Med Biol; 1990; 16(4):409-20. PubMed ID: 2396329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of tissue heterogeneities and large blood vessels on the thermal exposure induced by short high-power ultrasound pulses.
    Dorr LN; Hynynen K
    Int J Hyperthermia; 1992; 8(1):45-59. PubMed ID: 1545163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focal spacing and near-field heating during pulsed high temperature ultrasound therapy.
    Damianou C; Hynynen K
    Ultrasound Med Biol; 1993; 19(9):777-87. PubMed ID: 8134978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments. 1987.
    Hynynen K; Roemer R; Anhalt D; Johnson C; Xu ZX; Swindell W; Cetas T
    Int J Hyperthermia; 2010 Feb; 26(1):1-11. PubMed ID: 20100046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood perfusion and thermal conduction effects in Gaussian beam, minimum time single-pulse thermal therapies.
    Cheng KS; Roemer RB
    Med Phys; 2005 Feb; 32(2):311-7. PubMed ID: 15789574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia.
    Lin WL; Fan WC; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Mar; 46(5):1329-36. PubMed ID: 10725647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery.
    Damianou C; Hynynen K
    J Acoust Soc Am; 1994 Mar; 95(3):1641-9. PubMed ID: 8176064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.
    Hu J; Qian S; Ding Y
    Ultrasonics; 2010 May; 50(6):628-33. PubMed ID: 20156630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study.
    Diederich CJ; Hynynen K
    Med Phys; 1990; 17(4):626-34. PubMed ID: 2215407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of blood perfusion rate on the temperature distributions induced by multiple, scanned and focused ultrasonic beams in dogs' kidneys in vivo.
    Hynynen K; DeYoung D; Kundrat M; Moros E
    Int J Hyperthermia; 1989; 5(4):485-97. PubMed ID: 2746052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-predictive control of hyperthermia treatments.
    Arora D; Skliar M; Roemer RB
    IEEE Trans Biomed Eng; 2002 Jul; 49(7):629-39. PubMed ID: 12083297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot point temperature regulation for thermal lesion control during ultrasound thermal therapy.
    Liu HL; Chen YY; Yen JY; Lin WL
    Med Biol Eng Comput; 2004 Mar; 42(2):178-88. PubMed ID: 15125147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The feasibility of interstitial ultrasound hyperthermia.
    Hynynen K
    Med Phys; 1992; 19(4):979-87. PubMed ID: 1518487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of bidirectional ultrasound hyperthermia treatments of neck tumours.
    Tu SJ; Hynynen K; Roemer RB
    Int J Hyperthermia; 1994; 10(5):707-22. PubMed ID: 7806926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.