BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23963434)

  • 1. A sensitive method to quantify senescent cancer cells.
    Cahu J; Sola B
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 23963434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Senescent Colon and Breast Cancer Cells Induced by Doxorubicin Exhibit Enhanced Sensitivity to Curcumin, Caffeine, and Thymoquinone.
    El-Far AH; Darwish NHE; Mousa SA
    Integr Cancer Ther; 2020; 19():1534735419901160. PubMed ID: 32054357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Far-red Fluorescent Senescence-associated β-Galactosidase Probe for Identification and Enrichment of Senescent Tumor Cells by Flow Cytometry.
    Flor A; Pagacz J; Thompson D; Kron S
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo.
    Debacq-Chainiaux F; Erusalimsky JD; Campisi J; Toussaint O
    Nat Protoc; 2009; 4(12):1798-806. PubMed ID: 20010931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose-modified duocarmycin prodrugs as senolytics.
    Guerrero A; Guiho R; Herranz N; Uren A; Withers DJ; Martínez-Barbera JP; Tietze LF; Gil J
    Aging Cell; 2020 Apr; 19(4):e13133. PubMed ID: 32175667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doxorubicin-induced senescence through NF-κB affected by the age of mouse mesenchymal stem cells.
    Bashiri Dezfouli A; Salar-Amoli J; Pourfathollah AA; Yazdi M; Nikougoftar-Zarif M; Khosravi M; Hassan J
    J Cell Physiol; 2020 Mar; 235(3):2336-2349. PubMed ID: 31517394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Identification of Senescent Cells in Cancer.
    Biran A; Porat Z; Krizhanovsky V
    Methods Mol Biol; 2019; 1884():259-267. PubMed ID: 30465209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Senescent Cells by Extracellular Markers Using a Flow Cytometry-Based Approach.
    Althubiti M; Macip S
    Methods Mol Biol; 2017; 1534():147-153. PubMed ID: 27812876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative identification of senescent cells in aging and disease.
    Biran A; Zada L; Abou Karam P; Vadai E; Roitman L; Ovadya Y; Porat Z; Krizhanovsky V
    Aging Cell; 2017 Aug; 16(4):661-671. PubMed ID: 28455874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay.
    Itahana K; Campisi J; Dimri GP
    Methods Mol Biol; 2007; 371():21-31. PubMed ID: 17634571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparameter flow cytometric detection and quantification of senescent cells in vitro.
    Adewoye AB; Tampakis D; Follenzi A; Stolzing A
    Biogerontology; 2020 Dec; 21(6):773-786. PubMed ID: 32776262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction.
    Elmore LW; Rehder CW; Di X; McChesney PA; Jackson-Cook CK; Gewirtz DA; Holt SE
    J Biol Chem; 2002 Sep; 277(38):35509-15. PubMed ID: 12101184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-based detection and quantification of features of cellular senescence.
    Cho S; Hwang ES
    Methods Cell Biol; 2011; 103():149-88. PubMed ID: 21722803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of fluorescein-di-beta-D-galactopyranoside (FDG) and C12-FDG as substrates for beta-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells.
    Plovins A; Alvarez AM; Ibañez M; Molina M; Nombela C
    Appl Environ Microbiol; 1994 Dec; 60(12):4638-41. PubMed ID: 7811104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Analysis of Cellular Senescence in Culture and In Vivo.
    Zhao J; Fuhrmann-Stroissnigg H; Gurkar AU; Flores RR; Dorronsoro A; Stolz DB; St Croix CM; Niedernhofer LJ; Robbins PD
    Curr Protoc Cytom; 2017 Jan; 79():9.51.1-9.51.25. PubMed ID: 28055114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Live Premature Senescent Cells Using FUCCI Technology.
    Wang D; Lu P; Liu Y; Chen L; Zhang R; Sui W; Dumitru AG; Chen X; Wen F; Ouyang HW; Ji J
    Sci Rep; 2016 Aug; 6():30705. PubMed ID: 27503759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Detection of Unstained Live Senescent Cells with Imaging Flow Cytometry.
    Malavolta M; Giacconi R; Piacenza F; Strizzi S; Cardelli M; Bigossi G; Marcozzi S; Tiano L; Marcheggiani F; Matacchione G; Giuliani A; Olivieri F; Crivellari I; Beltrami AP; Serra A; Demaria M; Provinciali M
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doxorubicin induces senescence or apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the telomere binding factors 1 and 2.
    Spallarossa P; Altieri P; Aloi C; Garibaldi S; Barisione C; Ghigliotti G; Fugazza G; Barsotti A; Brunelli C
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2169-81. PubMed ID: 19801496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome signature of cellular senescence.
    Casella G; Munk R; Kim KM; Piao Y; De S; Abdelmohsen K; Gorospe M
    Nucleic Acids Res; 2019 Aug; 47(14):7294-7305. PubMed ID: 31251810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the cell biological changes occurring in the progression of DNA damage-induced senescence.
    Cho S; Park J; Hwang ES
    Mol Cells; 2011 Jun; 31(6):539-46. PubMed ID: 21533552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.