These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
943 related articles for article (PubMed ID: 23963659)
1. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659 [TBL] [Abstract][Full Text] [Related]
2. Iodide- and glucose-handling gene expression regulated by sorafenib or cabozantinib in papillary thyroid cancer. Ruan M; Liu M; Dong Q; Chen L J Clin Endocrinol Metab; 2015 May; 100(5):1771-9. PubMed ID: 25768669 [TBL] [Abstract][Full Text] [Related]
3. Aspirin disrupts the mTOR-Raptor complex and potentiates the anti-cancer activities of sorafenib via mTORC1 inhibition. Sun D; Liu H; Dai X; Zheng X; Yan J; Wei R; Fu X; Huang M; Shen A; Huang X; Ding J; Geng M Cancer Lett; 2017 Oct; 406():105-115. PubMed ID: 28687354 [TBL] [Abstract][Full Text] [Related]
4. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib. Ishijima N; Kanki K; Shimizu H; Shiota G Cancer Sci; 2015 May; 106(5):567-75. PubMed ID: 25683251 [TBL] [Abstract][Full Text] [Related]
5. The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Pignochino Y; Dell'Aglio C; Basiricò M; Capozzi F; Soster M; Marchiò S; Bruno S; Gammaitoni L; Sangiolo D; Torchiaro E; D'Ambrosio L; Fagioli F; Ferrari S; Alberghini M; Picci P; Aglietta M; Grignani G Clin Cancer Res; 2013 Apr; 19(8):2117-31. PubMed ID: 23434734 [TBL] [Abstract][Full Text] [Related]
6. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing. Tesori V; Piscaglia AC; Samengo D; Barba M; Bernardini C; Scatena R; Pontoglio A; Castellini L; Spelbrink JN; Maulucci G; Puglisi MA; Pani G; Gasbarrini A Sci Rep; 2015 Mar; 5():9149. PubMed ID: 25779766 [TBL] [Abstract][Full Text] [Related]
7. mTORC1 is a target of nordihydroguaiaretic acid to prevent breast tumor growth in vitro and in vivo. Zhang Y; Xu S; Lin J; Yao G; Han Z; Liang B; Zou Z; Chen Z; Song Q; Dai Y; Gao T; Liu A; Bai X Breast Cancer Res Treat; 2012 Nov; 136(2):379-88. PubMed ID: 23053656 [TBL] [Abstract][Full Text] [Related]
8. Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Yu H; Zhang H; Dong M; Wu Z; Shen Z; Xie Y; Kong Z; Dai X; Xu B Int J Oncol; 2017 Jan; 50(1):161-172. PubMed ID: 27922662 [TBL] [Abstract][Full Text] [Related]
9. In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signalling pathway. Pantovic A; Bosnjak M; Arsikin K; Kosic M; Mandic M; Ristic B; Tosic J; Grujicic D; Isakovic A; Micic N; Trajkovic V; Harhaji-Trajkovic L Int J Biochem Cell Biol; 2017 Feb; 83():84-96. PubMed ID: 27988363 [TBL] [Abstract][Full Text] [Related]
10. Negative regulation of the LKB1/AMPK pathway by ERK in human acute myeloid leukemia cells. Kawashima I; Mitsumori T; Nozaki Y; Yamamoto T; Shobu-Sueki Y; Nakajima K; Kirito K Exp Hematol; 2015 Jul; 43(7):524-33.e1. PubMed ID: 25846811 [TBL] [Abstract][Full Text] [Related]
11. Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids Liu G; Kuang S; Cao R; Wang J; Peng Q; Sun C FASEB J; 2019 Sep; 33(9):10089-10103. PubMed ID: 31199678 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of S6K1 enhances glucose deprivation-induced cell death via downregulation of anti-apoptotic proteins in MCF-7 breast cancer cells. Choi HN; Jin HO; Kim JH; Hong SE; Kim HA; Kim EK; Lee JK; Park IC; Noh WC Biochem Biophys Res Commun; 2013 Mar; 432(1):123-8. PubMed ID: 23376066 [TBL] [Abstract][Full Text] [Related]
13. Combined inhibition of glycolysis and AMPK induces synergistic breast cancer cell killing. Wu Y; Sarkissyan M; Mcghee E; Lee S; Vadgama JV Breast Cancer Res Treat; 2015 Jun; 151(3):529-39. PubMed ID: 25975952 [TBL] [Abstract][Full Text] [Related]
14. Benchmarking effects of mTOR, PI3K, and dual PI3K/mTOR inhibitors in hepatocellular and renal cell carcinoma models developing resistance to sunitinib and sorafenib. Serova M; de Gramont A; Tijeras-Raballand A; Dos Santos C; Riveiro ME; Slimane K; Faivre S; Raymond E Cancer Chemother Pharmacol; 2013 May; 71(5):1297-307. PubMed ID: 23479136 [TBL] [Abstract][Full Text] [Related]
15. Sorafenib inhibits intracellular signaling pathways and induces cell cycle arrest and cell death in thyroid carcinoma cells irrespective of histological origin or BRAF mutational status. Broecker-Preuss M; Müller S; Britten M; Worm K; Schmid KW; Mann K; Fuhrer D BMC Cancer; 2015 Mar; 15():184. PubMed ID: 25879531 [TBL] [Abstract][Full Text] [Related]
16. Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation. Calviño E; Estañ MC; Sánchez-Martín C; Brea R; de Blas E; Boyano-Adánez Mdel C; Rial E; Aller P J Pharmacol Exp Ther; 2014 Feb; 348(2):324-35. PubMed ID: 24307199 [TBL] [Abstract][Full Text] [Related]
17. Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Farabegoli F; Vettraino M; Manerba M; Fiume L; Roberti M; Di Stefano G Eur J Pharm Sci; 2012 Nov; 47(4):729-38. PubMed ID: 22954722 [TBL] [Abstract][Full Text] [Related]
18. 2-Arylthiazolidine-4-carboxylic acid amides (ATCAA) target dual pathways in cancer cells: 5'-AMP-activated protein kinase (AMPK)/mTOR and PI3K/Akt/mTOR pathways. Li CM; Narayanan R; Lu Y; Hurh E; Coss CC; Barrett CM; Miller DD; Dalton JT Int J Oncol; 2010 Oct; 37(4):1023-30. PubMed ID: 20811725 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Chen MB; Wei MX; Han JY; Wu XY; Li C; Wang J; Shen W; Lu PH Cell Signal; 2014 Jan; 26(1):102-9. PubMed ID: 23899558 [TBL] [Abstract][Full Text] [Related]
20. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]