These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 23964076)
1. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. Schwarz A; von Reumont BM; Erhart J; Chagas AC; Ribeiro JM; Kotsyfakis M FASEB J; 2013 Dec; 27(12):4745-56. PubMed ID: 23964076 [TBL] [Abstract][Full Text] [Related]
2. Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data. Schwarz A; Cabezas-Cruz A; Kopecký J; Valdés JJ BMC Evol Biol; 2014 Jan; 14():4. PubMed ID: 24397261 [TBL] [Abstract][Full Text] [Related]
3. Deep Sequencing Analysis of the Ixodes ricinus Haemocytome. Kotsyfakis M; Kopáček P; Franta Z; Pedra JH; Ribeiro JM PLoS Negl Trop Dis; 2015 May; 9(5):e0003754. PubMed ID: 25970599 [TBL] [Abstract][Full Text] [Related]
4. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Schwarz A; Tenzer S; Hackenberg M; Erhart J; Gerhold-Ay A; Mazur J; Kuharev J; Ribeiro JM; Kotsyfakis M Mol Cell Proteomics; 2014 Oct; 13(10):2725-35. PubMed ID: 25048707 [TBL] [Abstract][Full Text] [Related]
5. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. Liu XY; de la Fuente J; Cote M; Galindo RC; Moutailler S; Vayssier-Taussat M; Bonnet SI PLoS Negl Trop Dis; 2014 Jul; 8(7):e2993. PubMed ID: 25057911 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Medina JM; Jmel MA; Cuveele B; Gómez-Martín C; Aparicio-Puerta E; Mekki I; Kotál J; Martins LA; Hackenberg M; Bensaoud C; Kotsyfakis M Front Cell Infect Microbiol; 2022; 12():919786. PubMed ID: 35992165 [TBL] [Abstract][Full Text] [Related]
7. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. Cramaro WJ; Revets D; Hunewald OE; Sinner R; Reye AL; Muller CP BMC Genomics; 2015 Oct; 16():871. PubMed ID: 26510422 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome. Valdés JJ; Moal IH Ticks Tick Borne Dis; 2014 Oct; 5(6):947-50. PubMed ID: 25108785 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Esteves E; Maruyama SR; Kawahara R; Fujita A; Martins LA; Righi AA; Costa FB; Palmisano G; Labruna MB; Sá-Nunes A; Ribeiro JMC; Fogaça AC Front Cell Infect Microbiol; 2017; 7():476. PubMed ID: 29209593 [TBL] [Abstract][Full Text] [Related]
10. Whole body transcriptomes and new insights into the biology of the tick Ixodes ricinus. Charrier NP; Couton M; Voordouw MJ; Rais O; Durand-Hermouet A; Hervet C; Plantard O; Rispe C Parasit Vectors; 2018 Jun; 11(1):364. PubMed ID: 29941016 [TBL] [Abstract][Full Text] [Related]
11. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. Hackenberg M; Langenberger D; Schwarz A; Erhart J; Kotsyfakis M RNA; 2017 Aug; 23(8):1259-1269. PubMed ID: 28473453 [TBL] [Abstract][Full Text] [Related]
12. Insight into the sialome of the castor bean tick, Ixodes ricinus. Chmelar J; Anderson JM; Mu J; Jochim RC; Valenzuela JG; Kopecký J BMC Genomics; 2008 May; 9():233. PubMed ID: 18489795 [TBL] [Abstract][