These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 2396448)

  • 1. [Problems of muscular fatigue--relationship to stimulation conduction velocity and K(+) concentration].
    Kössler F; Caffier G; Lange F
    Z Gesamte Hyg; 1990 Jul; 36(7):354-6. PubMed ID: 2396448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External potassium and action potential propagation in rat fast and slow twitch muscles.
    Kössler F; Lange F; Caffier G; Küchler G
    Gen Physiol Biophys; 1991 Oct; 10(5):485-98. PubMed ID: 1816028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of the conduction velocity of isolated muscles induced by altered external potassium concentration.
    Kössler F; Lange F; Caffier G; Küchler G
    Biomed Biochim Acta; 1989; 48(5-6):S465-70. PubMed ID: 2757616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle action potential propagation velocity changes during activity.
    Juel C
    Muscle Nerve; 1988 Jul; 11(7):714-9. PubMed ID: 2457155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency fatigue in rat skeletal muscle: role of extracellular ion concentrations.
    Cairns SP; Dulhunty AF
    Muscle Nerve; 1995 Aug; 18(8):890-8. PubMed ID: 7630351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibitory actions of eserine and ouabain on the K, Rb and Cs uptake in slow and fast twitch muscles of the rat.
    Pfliegler G; Kovács T; Szabó B
    Acta Physiol Acad Sci Hung; 1981; 57(4):317-28. PubMed ID: 6977257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile and fatigue properties of thyrotoxic rat skeletal muscle.
    Fitts RH; Brimmer CJ; Troup JP; Unsworth BR
    Muscle Nerve; 1984; 7(6):470-7. PubMed ID: 6543899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes of extracellular potassium concentration in the cortex and brain stem during the acute phase of experimental closed head injury (author's transl)].
    Takahashi H; Manaka S; Sano K
    No To Shinkei; 1981 Apr; 33(4):365-76. PubMed ID: 7196250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle fatigue and lactic acid accumulation.
    Sahlin K
    Acta Physiol Scand Suppl; 1986; 556():83-91. PubMed ID: 3471061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contractile properties of fast and slow twitch muscles of the rat at temperatures between 6 and 42 degrees C.
    Kössler F; Küchler G
    Biomed Biochim Acta; 1987; 46(11):815-22. PubMed ID: 3446207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle fatigue and its relation to lactate accumulation and LDH activity in man.
    Tesch P; Sjödin B; Thorstensson A; Karlsson J
    Acta Physiol Scand; 1978 Aug; 103(4):413-20. PubMed ID: 716962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water and electrolyte fluxes during exercise and their relation to muscle fatigue.
    Sjøgaard G
    Acta Physiol Scand Suppl; 1986; 556():129-36. PubMed ID: 3471050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of ion fluxes in skeletal muscle fatigue.
    Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):246-53. PubMed ID: 2054741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized muscular fatigue: role of muscle metabolism and substrate depletion.
    Karlsson J
    Exerc Sport Sci Rev; 1979; 7():1-42. PubMed ID: 45178
    [No Abstract]   [Full Text] [Related]  

  • 17. Biochemical correlates of fatigue. A brief review.
    Vøllestad NK; Sejersted OM
    Eur J Appl Physiol Occup Physiol; 1988; 57(3):336-47. PubMed ID: 3286252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review.
    Sjøgaard G
    Can J Physiol Pharmacol; 1991 Feb; 69(2):238-45. PubMed ID: 2054740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of ionic processes in muscular fatigue during intense exercise.
    McKenna MJ
    Sports Med; 1992 Feb; 13(2):134-45. PubMed ID: 1373245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular potassium concentration and membrane potential in rabbit gastrocnemius muscle during tourniquet ischemia.
    Jennische E; Hagberg H; Haljamäe H
    Pflugers Arch; 1982 Feb; 392(4):335-9. PubMed ID: 7070964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.