BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23964713)

  • 1. Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM.
    Lee CF; Paull TT; Person MD
    J Proteome Res; 2013 Oct; 12(10):4302-15. PubMed ID: 23964713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
    Su D; Gaffrey MJ; Guo J; Hatchell KE; Chu RK; Clauss TR; Aldrich JT; Wu S; Purvine S; Camp DG; Smith RD; Thrall BD; Qian WJ
    Free Radic Biol Med; 2014 Feb; 67():460-70. PubMed ID: 24333276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation.
    Schilling B; Rardin MJ; MacLean BX; Zawadzka AM; Frewen BE; Cusack MP; Sorensen DJ; Bereman MS; Jing E; Wu CC; Verdin E; Kahn CR; Maccoss MJ; Gibson BW
    Mol Cell Proteomics; 2012 May; 11(5):202-14. PubMed ID: 22454539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling thiol redox proteome using isotope tagging mass spectrometry.
    Parker J; Zhu N; Zhu M; Chen S
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22472559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications.
    Paulech J; Liddy KA; Engholm-Keller K; White MY; Cordwell SJ
    Mol Cell Proteomics; 2015 Mar; 14(3):609-20. PubMed ID: 25561502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2.
    Song H; Bao S; Ramanadham S; Turk J
    Biochemistry; 2006 May; 45(20):6392-406. PubMed ID: 16700550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).
    Gu L; Robinson RA
    Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols.
    Sethuraman M; McComb ME; Heibeck T; Costello CE; Cohen RA
    Mol Cell Proteomics; 2004 Mar; 3(3):273-8. PubMed ID: 14726493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Nelson KJ; Bolduc JA; Wu H; Collins JA; Burke EA; Reisz JA; Klomsiri C; Wood ST; Yammani RR; Poole LB; Furdui CM; Loeser RF
    J Biol Chem; 2018 Oct; 293(42):16376-16389. PubMed ID: 30190325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel oxidative modifications in redox-active cysteine residues.
    Jeong J; Jung Y; Na S; Jeong J; Lee E; Kim MS; Choi S; Shin DH; Paek E; Lee HY; Lee KJ
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000513. PubMed ID: 21148632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Quantification of S-Sulfenylation Proteome of Mycobacterium tuberculosis under Oxidative Stress.
    Lu Y; Chen H; Wang P; Pang J; Lu X; Li G; Hu X; Wang X; Yang X; Li C; Lu Y; You X
    Microbiol Spectr; 2023 Mar; 11(2):e0338622. PubMed ID: 36943050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Annotation of S-Sulfonylated Peptides by Selective Infrared Multiphoton Dissociation Mass Spectrometry.
    Borotto NB; McClory PJ; Martin BR; HÃ¥kansson K
    Anal Chem; 2017 Aug; 89(16):8304-8310. PubMed ID: 28708386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential oxidation processes of peroxiredoxin 2 dependent on the reaction with several peroxides in human red blood cells.
    Ishida YI; Ichinowatari Y; Nishimoto S; Koike S; Ishii K; Ogasawara Y
    Biochem Biophys Res Commun; 2019 Oct; 518(4):685-690. PubMed ID: 31472963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids.
    Ishida YI; Aki M; Fujiwara S; Nagahama M; Ogasawara Y
    Hum Cell; 2017 Oct; 30(4):279-289. PubMed ID: 28434171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Tambor V; Kondelova A; Bartek J; Hodny Z
    Redox Biol; 2019 Jun; 24():101227. PubMed ID: 31154163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures.
    Sethuraman M; McComb ME; Huang H; Huang S; Heibeck T; Costello CE; Cohen RA
    J Proteome Res; 2004; 3(6):1228-33. PubMed ID: 15595732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.
    Slade WO; Werth EG; McConnell EW; Alvarez S; Hicks LM
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):631-40. PubMed ID: 25698223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple functions of Nm23-H1 are regulated by oxido-reduction system.
    Lee E; Jeong J; Kim SE; Song EJ; Kang SW; Lee KJ
    PLoS One; 2009 Nov; 4(11):e7949. PubMed ID: 19956735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay.
    Li R; Huang J; Kast J
    J Proteome Res; 2015 May; 14(5):2026-35. PubMed ID: 25767911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.