BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 23964730)

  • 1. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots.
    Li Q; Sun K; Chang K; Yu J; Chiu DT; Wu C; Qin W
    Anal Chem; 2013 Oct; 85(19):9087-91. PubMed ID: 23964730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker.
    Chen H; Xie Y; Kirillov AM; Liu L; Yu M; Liu W; Tang Y
    Chem Commun (Camb); 2015 Mar; 51(24):5036-9. PubMed ID: 25706307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial spore detection by [Tb3+(macrocycle)(dipicolinate)] luminescence.
    Cable ML; Kirby JP; Sorasaenee K; Gray HB; Ponce A
    J Am Chem Soc; 2007 Feb; 129(6):1474-5. PubMed ID: 17243674
    [No Abstract]   [Full Text] [Related]  

  • 4. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework.
    Zhang Y; Li B; Ma H; Zhang L; Zheng Y
    Biosens Bioelectron; 2016 Nov; 85():287-293. PubMed ID: 27183278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lanthanide-sensitized lanthanide luminescence: terbium-sensitized ytterbium luminescence in a trinuclear complex.
    Faulkner S; Pope SJ
    J Am Chem Soc; 2003 Sep; 125(35):10526-7. PubMed ID: 12940728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terbium Functionalized Micelle Nanoprobe for Ratiometric Fluorescence Detection of Anthrax Spore Biomarker.
    Luan K; Meng R; Shan C; Cao J; Jia J; Liu W; Tang Y
    Anal Chem; 2018 Mar; 90(5):3600-3607. PubMed ID: 29385798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)- functionalized UIO-67 metal-organic framework.
    Zhang X; Zhang W; Li G; Liu Q; Xu Y; Liu X
    Mikrochim Acta; 2020 Jan; 187(2):122. PubMed ID: 31932902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-ultraviolet light-emitting diode detects dipicolinic acid.
    Li Q; Dasgupta PK; Temkin H; Crawford MH; Fischer AJ; Allerman AA; Bogart KH; Lee SR
    Appl Spectrosc; 2004 Nov; 58(11):1360-3. PubMed ID: 15606942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of terbium chelate structure on dipicolinate ligation and the detection of Bacillus spores.
    Barnes LS; Kaneshige KR; Strong JS; Tan K; von Bremen HF; Mogul R
    J Inorg Biochem; 2011 Dec; 105(12):1580-8. PubMed ID: 22071082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.
    Gao N; Zhang Y; Huang P; Xiang Z; Wu FY; Mao L
    Anal Chem; 2018 Jun; 90(11):7004-7011. PubMed ID: 29701058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescence spectroscopic method for rapid detection of bacterial endospores: Proof of concept.
    Awasti N; Anand S
    JDS Commun; 2022 Mar; 3(2):97-100. PubMed ID: 36339735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and electrochemical responses of an anthrax biomarker based on single-walled carbon nanotubes covalently loaded with terbium complexes.
    Tan C; Wang Q; Zhang CC
    Chem Commun (Camb); 2011 Dec; 47(46):12521-3. PubMed ID: 22027893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy.
    Zhang X; Young MA; Lyandres O; Van Duyne RP
    J Am Chem Soc; 2005 Mar; 127(12):4484-9. PubMed ID: 15783231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A turn-on luminescence probe for highly selective detection of an anthrax biomarker.
    Liu X; Chen D; Wang C; Tian N; Li Z; Zhang Y; Ding ZJ
    Luminescence; 2020 Jun; 35(4):601-607. PubMed ID: 31916365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescent lanthanide graphene for detection of bacterial spores and cysteine.
    Wang Y; Li Y; Qi W; Song Y
    Chem Commun (Camb); 2015 Jul; 51(55):11022-5. PubMed ID: 26073874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors.
    Oh WK; Jeong YS; Song J; Jang J
    Biosens Bioelectron; 2011 Nov; 29(1):172-7. PubMed ID: 21893406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lanthanide-complex-based ratiometric luminescent probe specific for peroxynitrite.
    Song C; Ye Z; Wang G; Yuan J; Guan Y
    Chemistry; 2010 Jun; 16(22):6464-72. PubMed ID: 20486239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly selective lanthanide-containing probe for ratiometric luminescence detection of an anthrax biomarker.
    Liu X; Li B; Xu Y; Li Z; Zhang Y; Ding ZJ; Cui H; Wang J; Hou HB; Li H
    Dalton Trans; 2019 Jun; 48(22):7714-7719. PubMed ID: 31065665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.
    Bhardwaj N; Bhardwaj S; Mehta J; Kim KH; Deep A
    Biosens Bioelectron; 2016 Dec; 86():799-804. PubMed ID: 27479046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection.
    Xu J; Shen X; Jia L; Zhang M; Zhou T; Wei Y
    Biosens Bioelectron; 2017 Jan; 87():991-997. PubMed ID: 27686603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.