BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23965001)

  • 1. Thermal probe maskless lithography for 27.5 nm half-pitch Si technology.
    Cheong LL; Paul P; Holzner F; Despont M; Coady DJ; Hedrick JL; Allen R; Knoll AW; Duerig U
    Nano Lett; 2013 Sep; 13(9):4485-91. PubMed ID: 23965001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography.
    Ryu Cho YK; Rawlings CD; Wolf H; Spieser M; Bisig S; Reidt S; Sousa M; Khanal SR; Jacobs TDB; Knoll AW
    ACS Nano; 2017 Dec; 11(12):11890-11897. PubMed ID: 29083870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications.
    Delachat F; Le Drogoff B; Constancias C; Delprat S; Gautier E; Chaker M; Margot J
    Nanotechnology; 2016 Jan; 27(2):025304. PubMed ID: 26630379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of EUV resist damage by neutral beam etching.
    Kim GW; Chang WJ; Kang JE; Kim HJ; Yeom GY
    Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34808609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Line-Edge Roughness Stochastics for 5-nm Pattern Formation in the Extreme Ultraviolet Lithography.
    Kim SK
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4657-4660. PubMed ID: 30913764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond.
    Mojarad N; Hojeij M; Wang L; Gobrecht J; Ekinci Y
    Nanoscale; 2015 Mar; 7(9):4031-7. PubMed ID: 25653148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma-Etched Pattern Transfer of Sub-10 nm Structures Using a Metal-Organic Resist and Helium Ion Beam Lithography.
    Lewis SM; Hunt MS; DeRose GA; Alty HR; Li J; Wertheim A; De Rose L; Timco GA; Scherer A; Yeates SG; Winpenny REP
    Nano Lett; 2019 Sep; 19(9):6043-6048. PubMed ID: 31424217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full field analysis of critical dimension uniformity due to focal variation for contact features in extreme ultraviolet lithography.
    Kuo HF; Frederick
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2630-4. PubMed ID: 24745274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer.
    Marneffe JF; Chan BT; Spieser M; Vereecke G; Naumov S; Vanhaeren D; Wolf H; Knoll AW
    ACS Nano; 2018 Nov; 12(11):11152-11160. PubMed ID: 30481961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale patterning by UV nanoimprint lithography using an organometallic resist.
    Acikgoz C; Vratzov B; Hempenius MA; Vancso GJ; Huskens J
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2645-50. PubMed ID: 20356138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-10 nm patterning using EUV interference lithography.
    Päivänranta B; Langner A; Kirk E; David C; Ekinci Y
    Nanotechnology; 2011 Sep; 22(37):375302. PubMed ID: 21852737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid application of laser-focused atomic deposition and extreme ultraviolet interference lithography methods for manufacturing of self-traceable nanogratings.
    Liu J; Zhao J; Deng X; Yang S; Xue C; Wu Y; Tai R; Hu X; Dai G; Li T; Cheng X
    Nanotechnology; 2021 Apr; 32(17):175301. PubMed ID: 33461181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining thermal scanning probe lithography and dry etching for grayscale nanopattern amplification.
    Erbas B; Conde-Rubio A; Liu X; Pernollet J; Wang Z; Bertsch A; Penedo M; Fantner G; Banerjee M; Kis A; Boero G; Brugger J
    Microsyst Nanoeng; 2024; 10():28. PubMed ID: 38405129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates.
    Chen JK; Qui JQ; Fan SK; Kuo SW; Ko FH; Chu CW; Chang FC
    J Colloid Interface Sci; 2012 Feb; 367(1):40-8. PubMed ID: 22104277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi- and Gray-Scale Thermal Lithography of Silk Fibroin as Water-Developable Resist for Micro and Nanofabrication.
    Rostami M; Marković A; Wang Y; Pernollet J; Zhang X; Liu X; Brugger J
    Adv Sci (Weinh); 2024 Mar; 11(12):e2303518. PubMed ID: 38234204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a 100 × 100 mm
    Nam KB; Hu Q; Yeo JH; Kim MJ; Yoo JB
    Nanoscale Adv; 2022 Sep; 4(18):3824-3831. PubMed ID: 36133349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shot noise in electron-beam lithography and line-width measurements.
    Kruit P; Steenbrink SW
    Scanning; 2006; 28(1):20-6. PubMed ID: 16502622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective etching of SnO2 absorber in binary mask structure for extreme ultra-violet lithography.
    Lee SJ; Jung CY; Park SJ; Hwangbo CK; Seo HS; Kim SS; Lee NE
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3334-40. PubMed ID: 22849119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of the thin mask approximation in extreme ultraviolet mask roughness simulations.
    Naulleau PP; George SA
    Appl Opt; 2011 Jul; 50(19):3346-50. PubMed ID: 21743539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask.
    Hossain MN; Justice J; Lovera P; McCarthy B; O'Riordan A; Corbett B
    Nanotechnology; 2014 Sep; 25(35):355301. PubMed ID: 25116111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.