These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 2396516)
1. Spinal cord edema and changes in tissue content of Na+, K+, and Mg2+ after impact trauma in rats. Demediuk P; Lemke M; Faden AI Adv Neurol; 1990; 52():225-32. PubMed ID: 2396516 [TBL] [Abstract][Full Text] [Related]
2. Edema development and ion changes in rat spinal cord after impact trauma: injury dose-response studies. Lemke M; Faden AI J Neurotrauma; 1990; 7(1):41-54. PubMed ID: 2342118 [TBL] [Abstract][Full Text] [Related]
3. Changes in free fatty acids, phospholipids, and cholesterol following impact injury to the rat spinal cord. Demediuk P; Daly MP; Faden AI J Neurosci Res; 1989 May; 23(1):95-106. PubMed ID: 2520534 [TBL] [Abstract][Full Text] [Related]
4. Spinal cord sodium, potassium, calcium, and water concentration changes in rats after graded contusion injury. Kwo S; Young W; Decrescito V J Neurotrauma; 1989; 6(1):13-24. PubMed ID: 2754736 [TBL] [Abstract][Full Text] [Related]
5. Traumatic spinal cord injury in rats causes increases in tissue thromboxane but not peptidoleukotrienes. Demediuk P; Faden AI J Neurosci Res; 1988 May; 20(1):115-21. PubMed ID: 3418749 [TBL] [Abstract][Full Text] [Related]
6. Effects of TRH-analog treatment on tissue cations, phospholipids and energy metabolism after spinal cord injury. Faden AI; Yum SW; Lemke M; Vink R J Pharmacol Exp Ther; 1990 Nov; 255(2):608-14. PubMed ID: 2123006 [TBL] [Abstract][Full Text] [Related]
7. Time-level relationship for nitric oxide and the protective effects of aminoguanidine in experimental spinal cord injury. Soy O; Aslan O; Uzun H; Barut S; Iğdem AA; Belce A; Colak A Acta Neurochir (Wien); 2004 Dec; 146(12):1329-35; discussion 1335-6. PubMed ID: 15309585 [TBL] [Abstract][Full Text] [Related]
8. Total cell associated electrolyte homeostasis in rat spinal cord cells following apparently irreversible injury. Chanimov M; Berman S; Gofman V; Weissgarten Y; Averbukh Z; Cohen ML; Vitin A; Bahar M Med Sci Monit; 2006 Feb; 12(2):BR63-7. PubMed ID: 16449963 [TBL] [Abstract][Full Text] [Related]
9. Valuation of some biological parameters in acute spinal cord trauma: experimental study in rabbits. Scuotto A; Borriello R; Paggio G; D'Avanzo R; Cioffi FA; Sciaudone G J Neurosurg Sci; 1984; 28(3-4):145-7. PubMed ID: 6536708 [TBL] [Abstract][Full Text] [Related]
10. [Local spinal cord glucose utilization and extracellular potassium activity changes after spinal cord injury in rats]. Murai H; Itoh C; Wagai N; Nakamura T; Yamaura A; Makino H No To Shinkei; 1991 Apr; 43(4):337-42. PubMed ID: 1888573 [TBL] [Abstract][Full Text] [Related]
11. [Changes of microcirculation dynamics in the formation of edema following spinal compression injury in rabbits]. Suzuki Y Nihon Seikeigeka Gakkai Zasshi; 1985 Jul; 59(7):707-18. PubMed ID: 4067371 [TBL] [Abstract][Full Text] [Related]
12. Repeated topical application of growth hormone attenuates blood-spinal cord barrier permeability and edema formation following spinal cord injury: an experimental study in the rat using Evans blue, ([125])I-sodium and lanthanum tracers. Nyberg F; Sharma HS Amino Acids; 2002; 23(1-3):231-9. PubMed ID: 12373543 [TBL] [Abstract][Full Text] [Related]
13. Alterations in tissue Mg++, Na+ and spinal cord edema following impact trauma in rats. Lemke M; Demediuk P; McIntosh TK; Vink R; Faden AI Biochem Biophys Res Commun; 1987 Sep; 147(3):1170-5. PubMed ID: 3663212 [TBL] [Abstract][Full Text] [Related]
14. K+, Na+, Mg2+, Ca2+, and water contents in human skeletal muscle: correlations among these monovalent and divalent cations and their alterations in K+ -depleted subjects. Tavichakorntrakool R; Prasongwattana V; Sriboonlue P; Puapairoj A; Wongkham C; Wiangsimma T; Khunkitti W; Triamjangarun S; Tanratanauijit M; Chamsuwan A; Khunkitti W; Yenchitsomanus PT; Thongboonkerd V Transl Res; 2007 Dec; 150(6):357-66. PubMed ID: 18022598 [TBL] [Abstract][Full Text] [Related]
15. Characterization of mianserin neuroprotection in experimental spinal trauma: dose/route response and late treatment. Salzman SK; Kelly G; Chavin J; Wang L; Puniak MA; Agresta CA; Azim S J Pharmacol Exp Ther; 1994 Apr; 269(1):322-8. PubMed ID: 8169839 [TBL] [Abstract][Full Text] [Related]
16. Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats. Colak A; Kelten B; Sağmanligil A; Akdemir O; Karaoğlan A; Sahan E; Celik O; Barut S J Clin Neurosci; 2008 Jun; 15(6):665-71. PubMed ID: 18343118 [TBL] [Abstract][Full Text] [Related]
17. [Excitatory amino acids and prostanoids release in spinal cord injury]. Ishikawa T; Marsala M No To Shinkei; 1996 Mar; 48(3):259-63. PubMed ID: 8868337 [TBL] [Abstract][Full Text] [Related]
18. Traumatic brain injury in the rat: effects on lipid metabolism, tissue magnesium, and water content. Demediuk P; Faden AI; Romhanyi R; Vink R; McIntosh TK J Neurotrauma; 1988; 5(2):105-19. PubMed ID: 3066912 [TBL] [Abstract][Full Text] [Related]
19. Topical application of dynorphin A (1-17) antiserum attenuates trauma induced alterations in spinal cord evoked potentials, microvascular permeability disturbances, edema formation and cell injury: an experimental study in the rat using electrophysiological and morphological approaches. Winkler T; Sharma HS; Gordh T; Badgaiyan RD; Stålberg E; Westman J Amino Acids; 2002; 23(1-3):273-81. PubMed ID: 12373547 [TBL] [Abstract][Full Text] [Related]
20. Assessment of spinal cord pathology following trauma using early changes in the spinal cord evoked potentials: a pharmacological and morphological study in the rat. Sharma HS; Winkler T Muscle Nerve Suppl; 2002; 11():S83-91. PubMed ID: 12116291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]